

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Embedding tetrahedra into quasirandom hypergraphs

Christian Reiher^a, Vojtěch Rödl^{b,1}, Mathias Schacht^{a,2}

ARTICLE INFO

Article history: Received 4 June 2015 Available online 26 July 2016

Keywords: Quasirandom hypergraphs Extremal graph theory Turán's problem Tetrahedron

ABSTRACT

We investigate extremal problems for quasirandom hypergraphs. We say that a 3-uniform hypergraph H=(V,E) is $(d,\eta, ...)$ -quasirandom if for any subset $X\subseteq V$ and every set of pairs $P\subseteq V\times V$ the number of pairs $(x,(y,z))\in X\times P$ with $\{x,y,z\}$ being a hyperedge of H is in the interval $d|X||P|\pm\eta|V|^3$. We show that for any $\varepsilon>0$ there exists $\eta>0$ such that every sufficiently large $(1/2+\varepsilon,\eta, ...)$ -quasirandom hypergraph contains a tetrahedron, i.e., four vertices spanning all four hyperedges. A known random construction shows that the density 1/2 is best possible. This result is closely related to a question of Erdős, whether every weakly quasirandom 3-uniform hypergraph H with density bigger than 1/2, i.e., every large subset of vertices induces a hypergraph with density bigger than 1/2, contains a tetrahedron.

© 2016 Elsevier Inc. All rights reserved.

^a Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany

 $^{^{\}mathrm{b}}$ Department of Mathematics and Computer Science, Emory University, Atlanta, USA

 $[\]label{lem:condition} \begin{tabular}{ll} E-mail\ addresses: $Christian.Reiher@uni-hamburg.de$ (Chr. Reiher), $rodl@mathcs.emory.edu$ (V. Rödl), $schacht@math.uni-hamburg.de$ (M. Schacht). \end{tabular}$

¹ The second author was supported by NSF grants DMS 1301698 and 1102086.

² The third author was supported through the Heisenberg-Programme of the Deutsche Forschungsgemeinschaft (DFG Grant SCHA 1263/4-2).

1. Introduction

1.1. Extremal problems for graphs and hypergraphs

Given a fixed graph F a typical problem in extremal graph theory asks for the maximum number of edges that a (large) graph G on n vertices containing no copy of F can have. More formally, for a fixed graph F let the extremal number $\exp(n, F)$ be the number |E| of edges of an F-free graph G = (V, E) on |V| = n vertices with the maximum number of edges. It is well known and not hard to observe that the sequence $\exp(n, F)/\binom{n}{2}$ is decreasing. Consequently, one may define the $Tur\'an\ density$

$$\pi(F) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{2}},$$

which describes the maximum density of large F-free graphs. The systematic study of these extremal parameters was initiated by Turán [23], who determined $\operatorname{ex}(n, K_k)$ for complete graphs K_k . Thanks to his work and the results from [5] by Erdős and Stone it is known that the Turán density of any graph F with at least one edge can be explicitly computed using the formula

$$\pi(F) = \frac{\chi(F) - 2}{\chi(F) - 1}.$$
 (1)

Already in his original work [23] Turán asked for hypergraph extensions of these extremal problems. We restrict ourselves to 3-uniform hypergraphs H = (V, E), where V = V(H) is a finite set of vertices and the set of hyperedges $E = E(H) \subseteq {V \choose 3}$ is a collection of 3-element sets of vertices. We shall only consider graphs and 3-uniform hypergraphs and when we are referring simply to a hypergraph we will always mean a 3-uniform hypergraph. Moreover, for a simpler notation in the context of edges $\{i,j\}$ and hyperedges $\{i,j,k\}$ we omit the parentheses and just write ij or ijk. In particular, ijk denotes an unordered triple, while for ordered triples we stick to the standard notation (i,j,k).

Despite considerable effort no formula similar to (1) is known or conjectured to hold for general 3-uniform hypergraphs F. Determining the value of $\pi(F)$ is a well known and hard problem even for "simple" hypergraphs like the complete 3-uniform hypergraph $K_4^{(3)}$ on four vertices, which is also called the *tetrahedron*. Currently the best known bounds for its Turán density are

$$\frac{5}{9} \le \pi(K_4^{(3)}) \le 0.5616$$
,

where the lower bounds is given by what is believed to be an optimal construction due to Turán (see, e.g., [3]). The upper bound is due to Razborov [13] and the proof is based on the *flag algebra method* introduced by Razborov [12]. For a thorough discussion of Turán type results and problems for hypergraphs we refer to the recent survey of Keevash [9].

Download English Version:

https://daneshyari.com/en/article/4656659

Download Persian Version:

https://daneshyari.com/article/4656659

<u>Daneshyari.com</u>