

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

Series B

www.elsevier.com/locate/jctb

Non-planar extensions of subdivisions of planar graphs

Journal of Combinatorial

Theory

Sergey Norin^{a,1}, Robin Thomas^{b,2}

 ^a Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2K6, Canada
^b School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA

ARTICLE INFO

Article history: Received 19 March 2014 Available online 2 August 2016

Keywords: Graph Planarity Non-planar extension Subdivision

ABSTRACT

Almost 4-connectivity is a weakening of 4-connectivity which allows for vertices of degree three. In this paper we prove the following theorem. Let G be an almost 4-connected trianglefree planar graph, and let H be an almost 4-connected nonplanar graph such that H has a subgraph isomorphic to a subdivision of G. Then there exists a graph G' such that G'is isomorphic to a minor of H, and either

- (i) G' = G + uv for some vertices $u, v \in V(G)$ such that no facial cycle of G contains both u and v, or
- (ii) $G' = G + u_1v_1 + u_2v_2$ for some distinct vertices $u_1, u_2, v_1, v_2 \in V(G)$ such that u_1, u_2, v_1, v_2 appear on some facial cycle of G in the order listed.

This is a lemma to be used in other papers. In fact, we prove a more general theorem, where we relax the connectivity assumptions, do not assume that G is planar, and consider subdivisions rather than minors. Instead of face boundaries we work with a collection of cycles that cover every edge twice and have pairwise connected intersection. Finally, we prove a version of this result that applies when $G \setminus X$ is planar for some

http://dx.doi.org/10.1016/j.jctb.2016.07.008

 $0095\text{-}8956/\odot$ 2016 The Authors. Published by Elsevier Inc. All rights reserved.

E-mail address: thomas@math.gatech.edu (R. Thomas).

¹ Supported by an NSERC Discovery Grant No. 418520.

 $^{^2\,}$ Partially supported by NSF under Grant Nos. DMS-9623031, DMS-0200595 and DMS-1202640, and by NSA under Grant No. MDA904-98-1-0517.

set $X \subseteq V(G)$ of size at most k, but $H \setminus Y$ is non-planar for every set $Y \subseteq V(H)$ of size at most k.

 $\hfill \odot$ 2016 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

In this paper graphs are finite and simple (i.e., they have no loops or multiple edges). Paths and cycles have no "repeated" vertices or edges. A graph is a subdivision of another if the first can be obtained from the second by replacing each edge by a non-zero length path with the same ends, where the paths are disjoint, except possibly for shared ends. The replacement paths are called segments, and their ends are called branch-vertices. For later convenience a one-vertex component of a graph is also regarded as a segment, and its unique vertex as a branch-vertex. Let G, S, H be graphs such that S is a subgraph of H and is isomorphic to a subdivision of G. In that case we say that S is a G-subdivision in H. If G has no vertices of degree two (which will be the case in our applications), then the segments and branch-vertices of S are uniquely determined by S. An S-path is a path of length at least one with both ends in S and otherwise disjoint from S. A graph G is almost 4-connected if it is simple, 3-connected, has at least five vertices, and V(G) cannot be partitioned into three sets A, B, C in such a way that $|C| = 3, |A| \ge 2, |B| \ge 2$, and no edge of G has one end in A and the other end in B.

Let a non-planar graph H have a subgraph S isomorphic to a subdivision of a planar graph G. For various problems in structural graph theory it is useful to know the minimal subgraphs of H that have a subgraph isomorphic to a subdivision of G and are non-planar. We show that under some mild connectivity assumptions these "minimal non-planar extensions" of G are quite nice:

(1.1) Let G be an almost 4-connected planar graph on at least seven vertices, let H be an almost 4-connected non-planar graph, and let there exist a G-subdivision in H. Then there exists a G-subdivision S in H such that one of the following conditions holds:

- (i) there exists an S-path in H joining two vertices of S not incident with the same face, or
- (ii) there exist two disjoint S-paths with ends s₁, t₁ and s₂, t₂, respectively, such that the vertices s₁, s₂, t₁, t₂ belong to some face boundary of S in the order listed. Moreover, for i = 1, 2 the vertices s_i and t_i do not belong to the same segment of S, and if two segments of S include all of s₁, t₁, s₂, t₂, then those segments are vertex-disjoint.

The connectivity assumptions guarantee that the face boundaries in a planar embedding of S are uniquely determined, and hence it makes sense to speak about incidence with faces. Theorem (1.1) is related to, but independent of [10]. We refer the reader to [13] for an overview of related results. Download English Version:

https://daneshyari.com/en/article/4656663

Download Persian Version:

https://daneshyari.com/article/4656663

Daneshyari.com