

Contents lists available at ScienceDirect

## Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb



## Immersion in four-edge-connected graphs



Maria Chudnovsky  $^{\rm a,1},$  Zdeněk Dvořák  $^{\rm b,2},$  Tereza Klimošová $^{\rm c,3},$  Paul Seymour  $^{\rm a,4}$ 

- <sup>a</sup> Princeton University, Princeton, NJ 08544, USA
- <sup>b</sup> Charles University, Prague, Czech Republic
- <sup>c</sup> University of Warwick, Coventry CV4 7AL, UK

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 2 June 2013 Available online 11 August 2015

 $\begin{array}{l} Keywords: \\ \text{Graph immersion} \\ \text{Grid minors} \end{array}$ 

Fix g>1. Every graph of large enough tree-width contains a  $g\times g$  grid as a minor; but here we prove that every four-edge-connected graph of large enough tree-width contains a  $g\times g$  grid as an immersion (and hence contains any fixed graph with maximum degree at most four as an immersion). This result has a number of applications.

© 2015 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let G, H be graphs. (All graphs in this paper are finite, possibly with loops or parallel edges.) A weak immersion of H in G is a map  $\eta$ , with domain  $V(H) \cup E(H)$ , mapping

E-mail address: pds@math.princeton.edu (P. Seymour).

 $<sup>^{\</sup>rm 1}$  Supported by NSF grants IIS-1117631 and DMS-1001091.

<sup>&</sup>lt;sup>2</sup> Supported by the Center of Excellence of the Institute for Theoretical Computer Science, Prague, project P202/12/G061 of Czech Science Foundation.

 $<sup>^3</sup>$  This author was a student at Charles University until September 2012. The work leading to this invention has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259385.

Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

each vertex of H to a vertex of G, and each edge of H to a path or cycle of G, satisfying the following:

- $\eta(u) \neq \eta(v)$  for all distinct  $u, v \in V(H)$ ;
- for each  $e \in E(H)$  with distinct ends u and v,  $\eta(e)$  is a path of G with ends  $\eta(u)$ ,  $\eta(v)$ ;
- for each loop in H with end v,  $\eta(e)$  is a cycle of G passing through  $\eta(v)$ ; and
- for all distinct  $e, f \in E(H), E(\eta(e) \cap \eta(f)) = \emptyset$ .

If in addition we have

• for all  $v \in V(H)$  and  $e \in E(H)$ , if e is not incident with v in H then  $\eta(v) \notin V(\eta(e))$ 

then  $\eta$  is called a *strong immersion*. This paper is only concerned with strong immersion, and from now on we omit "strong", and just speak of "immersion". If there is an immersion of H in G, we say that "H can be immersed in G" and "G contains H as an immersion" (or just "G immerses H"). If in addition, for all distinct  $e, f \in E(H)$ , every vertex of  $\eta(e) \cap \eta(f)$  is equal to  $\eta(v)$  for some  $v \in V(H)$  incident in H with both e and f, then  $\eta$  is called a *subdivision map* of H in G.

If g > 1 is an integer, the  $g \times g$  grid is a graph with vertex set  $\{v_{ij} : 1 \leq i, j \leq g\}$ , where  $v_{ij}$  is adjacent to  $v_{i'j'}$  if |i - i'| + |j - j'| = 1. We denote this graph by  $J_g$ .

A tree-decomposition of a graph G is a pair  $(T, (W_t : t \in V(T)))$ , such that

- T is a tree
- $W_t \subseteq V(G)$  for each  $t \in V(T)$
- $V(G) = \bigcup (W_t : t \in V(T))$
- for every edge uv of G, there exists  $t \in V(T)$  with  $u, v \in W_t$
- for  $t, t', t'' \in V(T)$ , if t' belongs to the path of T between t and t'', then  $W_t \cap W_{t''} \subseteq W_{t'}$ .

We call  $\max(|W_t| - 1 : t \in V(T))$  the width of the tree-decomposition, and say that G has tree-width k if k is minimum such that G admits a tree-decomposition of width k.

We say that H is a *minor* of G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. The following is well-known [3]:

**1.1.** For all g > 1 there exists k such that every graph with tree-width at least k contains  $J_g$  as a minor.

(Note that this is sharp in the sense that for all k there exists g such that no graph of tree-width less than k contains  $J_g$  as a minor.) In this paper we prove a similar result for immersion, the following. (Two versions of this result were found independently by two subsets of the authors, and one of these versions appears in [1].)

### Download English Version:

# https://daneshyari.com/en/article/4656685

Download Persian Version:

https://daneshyari.com/article/4656685

<u>Daneshyari.com</u>