

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Perfect matchings in 4-uniform hypergraphs

Imdadullah Khan

Department of Computer Science, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan

ARTICLE INFO

Article history: Received 29 January 2011 Available online 26 September 2015

Keywords: Hypergraphs Perfect matching Vertex degree

ABSTRACT

A perfect matching in a 4-uniform hypergraph on n vertices is a subset of $\lfloor \frac{n}{4} \rfloor$ disjoint edges. We prove that if H is a sufficiently large 4-uniform hypergraph on n = 4k vertices such that every vertex belongs to more than $\binom{n-1}{3} - \binom{3n/4}{3}$ edges, then H contains a perfect matching. A construction due to Hàn, Person, and Schacht shows that this result is the best possible.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction and notation

For graphs we follow the notation in [3]. For a set T, we refer to all of its k-element subsets (k-sets for short) as $\binom{T}{k}$ and to the number of such k-sets as $\binom{|T|}{k}$. We say that H = (V(H), E(H)) is an r-uniform hypergraph or r-graph for short, where V(H) is the set of vertices and $E \subset \binom{V(H)}{r}$ is a family of r-sets of V(H). When the graph referred to is clear from the context we will use V instead of V(H) and will identify H with E(H). For an r-graph H and a set $D = \{v_1, \ldots, v_d\} \in \binom{V}{d}, 1 \le d \le r$, the degree of D in H, $deg_H(D) = deg_r(D)$ denotes the number of edges of H that contain D. For $1 \le d \le r$, let

Journal of Combinatorial

Theory

E-mail address: imdad.khan@lums.edu.pk.

$$\delta_d = \delta_d(H) = \min\left\{ deg_r(D) : D \in \binom{V}{d} \right\}.$$

We say that $H(V_1, \ldots, V_r)$ is an *r*-partite *r*-graph if there is a partition of V(H) into *r* sets, i.e., $V(H) = V_1 \cup \cdots \cup V_r$, and every edge of *H* uses exactly one vertex from each V_i . We call it a balanced *r*-partite *r*-graph if all V_i 's are of the same size. Furthermore, $H(V_1, \ldots, V_r)$ is a complete *r*-partite *r*-graph if every *r*-tuple that uses one vertex from each V_i belongs to E(H). We denote a balanced complete *r*-partite *r*-graph by $K^{(r)}(t)$, where $t = |V_i|$. For r = 3, we refer to the balanced 3-partite 3-graph $H(V_1, V_2, V_3)$, where $|V_i| = 4$ as a $4 \times 4 \times 4$ 3-graph.

When A and B are disjoint subsets of V(H) of an r-graph H, for a vertex $v \in A$ we denote by $\deg_r\left(v, \binom{B}{r-1}\right)$ the number of (r-1)-sets of B that make edges with v, while $e_r\left(A, \binom{B}{r-1}\right)$ is the sum of $\deg_r\left(v, \binom{B}{r-1}\right)$ over all $v \in A$ and $d_r\left(A, \binom{B}{r-1}\right) = e_r\left(A, \binom{B}{r-1}\right)/|A|\binom{|B|}{r-1}$. We denote by $H\left(A, \binom{B}{r-1}\right)$ such an r-graph when all edges use one vertex from A and r-1 vertices from B. Similarly $H\left(A, B, \binom{C}{r-2}\right)$ is an r-graph where A, B, and C are disjoint subsets of V(H) and every edge in H uses one vertex each from A and B and r-2 vertices from C. Degree of a vertex $v \in A$ is the number of (r-1)-sets of V(H), containing one vertex from B and r-2 vertices from C that make edges with v. Degree of a vertex in B is similarly defined. $e_r\left(A, B, \binom{C}{r-2}\right)$ is the number of edges in $H\left(A, B, \binom{C}{r-2}\right)$, while its density is

$$d_r\left(A, B, \binom{C}{r-2}\right) = \frac{e_r\left(A, B, \binom{C}{r-2}\right)}{|A||B|\binom{|C|}{r-2}}$$

When A and B are disjoint subsets of V(H), for 1 < k < r - 1, $H\left(\binom{A}{k}, \binom{B}{r-k}\right)$ is an *r*-graph where all edges use k vertices from A and r - k vertices from B. $e_r\left(\binom{A}{k}, \binom{B}{r-k}\right)$ is similarly defined as above. When A_1, \ldots, A_r are disjoint subsets of V(H), for a vertex $v \in A_1$ we denote by $deg_r(v, (A_2 \times \cdots \times A_r))$ the number of edges in the *r*-partite *r*-graph induced by subsets $\{v\}, A_2, \ldots, A_r$, and $e_r(A_1, (A_2 \times \cdots \times A_r))$ is the sum of $deg_r(v, (A_2 \times \cdots \times A_r))$ over all $v \in A_1$. Similarly

$$d_r(A_1, (A_2 \times \dots \times A_r)) = \frac{e_r(A_1, (A_2 \times \dots \times A_r))}{|A_1 \times A_2 \times \dots \times A_r|}$$

An r-graph H on n vertices is η -dense if it has at least $\eta\binom{n}{r}$ edges. We use the notation $d_r(H) \geq \eta$ to refer to an η -dense r-graph H. A bipartite graph G = (A, B) is η -dense if $d(A, B) = e(A, B)/(|A||B|) \geq \eta$. For $U \subset V$, $H|_U$ is the restriction of H to U. For simplicity we refer to $d_r(H|_U)$ as $d_r(U)$ and to $E(H|_U)$ as E(U). A matching in H is a set of disjoint edges of H, and a perfect matching is a matching that contains all vertices. We will only deal with r-graphs on n vertices where n = rk for some integer k; we denote

334

Download English Version:

https://daneshyari.com/en/article/4656693

Download Persian Version:

https://daneshyari.com/article/4656693

Daneshyari.com