On the chromatic number of random regular graphs ${ }^{\text {su }}$

Amin Coja-Oghlan ${ }^{\text {a }}$, Charilaos Efthymiou ${ }^{\text {b,1 }}$, Samuel Hetterich ${ }^{\text {a }}$
${ }^{\text {a }}$ Goethe University, Mathematics Institute, Germany
${ }^{\mathrm{b}}$ Georgia Institute of Technology, College of Computing, United States

A R T I C L E I N F O

Article history:

Received 28 August 2013
Available online 26 September 2015

Keywords:

Random graphs
Graph coloring
Phase transitions

A B S T R A C T

Let $G(n, d)$ be the random d-regular graph on n vertices.
For every integer k exceeding a certain constant k_{0} we identify a number $d_{k \text {-col }}$ such that $G(n, d)$ is k-colorable w.h.p. if $d<d_{k \text {-col }}$ and non- k-colorable w.h.p. if $d>d_{k \text {-col }}$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $G(n, d)$ be the random d-regular graph on the vertex set $V=\{1, \ldots, n\}$. Unless specified otherwise, we let d and $k \geq 3$ be n-independent integers. In addition, we let $G_{\text {ER }}(n, m)$ denote the uniformly random graph on V with precisely m edges (the "Erdős-Rényi model"). We say that a property \mathcal{E} holds with high probability ('w.h.p.') if $\lim _{n \rightarrow \infty} \mathrm{P}[\mathcal{E}]=1$.

[^0]
1.1. Results

Determining the chromatic number of random graphs is one of the longest-standing challenges in probabilistic combinatorics. For the Erdős-Rényi model, the single most intensely studied model in the random graphs literature, the question dates back to the seminal 1960 paper that started the theory of random graphs [18]. ${ }^{2}$ Apart from $G_{\text {ER }}(n, m)$, the model that has received the most attention certainly is the random regular graph $G(n, d)[10,22]$. In the present paper, we provide an almost complete solution to the chromatic number problem on $G(n, d)$, at least in the case that d remains fixed as $n \rightarrow \infty$ (which we regard as the most interesting regime).

The strongest previous result on the chromatic number of $G(n, d)$ is due to Kemkes, Pérez-Giménez and Wormald [23]. They proved that w.h.p. for $k \geq 3$

$$
\begin{align*}
\chi(G(n, d))=k & \text { if } d \in((2 k-3) \ln (k-1),(2 k-2) \ln (k-1)), \text { and } \tag{1.1}\\
\chi(G(n, d)) \in\{k, k+1\} & \text { if } d \in[(2 k-2) \ln (k-1),(2 k-1) \ln k] . \tag{1.2}
\end{align*}
$$

These bounds imply that $G(n, d)$ is k-colorable w.h.p. if $d<(2 k-2) \ln (k-1)$, while $G(n, d)$ fails to be k-colorable w.h.p. if $d>(2 k-1) \ln k$. The main result of the present paper is

Theorem 1.1. There is a sequence $\left(\varepsilon_{k}\right)_{k \geq 3}$ with $\lim _{k \rightarrow \infty} \varepsilon_{k}=0$ such that the following is true.

1. If $d \leq(2 k-1) \ln k-2 \ln 2-\varepsilon_{k}$, then $G(n, d)$ is k-colorable w.h.p.
2. If $d \geq(2 k-1) \ln k-1+\varepsilon_{k}$, then $G(n, d)$ fails to be k-colorable w.h.p.

We have not attempted to explicitly extract or even optimize the error term ε_{k}.
Theorem 1.1 implies the following "threshold result".
Corollary 1.2. There is a constant $k_{0}>0$ such that for any integer $k \geq k_{0}$ there exists a number $d_{k-c o l}$ with the following two properties.

- If $d<d_{k \text {-col }}$, then $G(n, d)$ is k-colorable w.h.p.
- If $d>d_{k-\mathrm{col}}$, then $G(n, d)$ fails to be k-colorable w.h.p.

To obtain Corollary 1.2, let ε_{k} as in Theorem 1.1 and consider the interval

$$
I_{k}=\left((2 k-1) \ln k-2 \ln 2-\varepsilon_{k},(2 k-1) \ln k-1+\varepsilon_{k}\right) .
$$

[^1]
https://daneshyari.com/en/article/4656694

Download Persian Version:
https://daneshyari.com/article/4656694

Daneshyari.com

[^0]: (t) The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 278857-PTCC.

 E-mail addresses: acoghlan@math.uni-frankfurt.de (A. Coja-Oghlan), cefthymiou3@mail.gatech.edu (C. Efthymiou), hetterich@math.uni-frankfurt.de (S. Hetterich).
 ${ }^{1}$ The second author is supported by ARC-GaTech.

[^1]: ${ }^{2}$ The chromatic number problems on $G_{\text {ER }}(n, m)$ and on the binomial random graph (where each pair of vertices is connected with probability $p=m /\binom{n}{2}$ independently) turn out to be equivalent [22, Chapter 1].

