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Let G(n, d) be the random d-regular graph on n vertices. 
For every integer k exceeding a certain constant k0 we iden-
tify a number dk-col such that G(n, d) is k-colorable w.h.p. if 
d < dk-col and non-k-colorable w.h.p. if d > dk-col.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G(n, d) be the random d-regular graph on the vertex set V = {1, . . . , n}. Un-
less specified otherwise, we let d and k ≥ 3 be n-independent integers. In addition, 
we let GER(n, m) denote the uniformly random graph on V with precisely m edges (the 
“Erdős–Rényi model”). We say that a property E holds with high probability (‘w.h.p.’) 
if limn→∞ P [E ] = 1.
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1.1. Results

Determining the chromatic number of random graphs is one of the longest-standing 
challenges in probabilistic combinatorics. For the Erdős–Rényi model, the single most 
intensely studied model in the random graphs literature, the question dates back to 
the seminal 1960 paper that started the theory of random graphs [18].2 Apart from 
GER(n, m), the model that has received the most attention certainly is the random reg-
ular graph G(n, d) [10,22]. In the present paper, we provide an almost complete solution 
to the chromatic number problem on G(n, d), at least in the case that d remains fixed 
as n → ∞ (which we regard as the most interesting regime).

The strongest previous result on the chromatic number of G(n, d) is due to Kemkes, 
Pérez-Giménez and Wormald [23]. They proved that w.h.p. for k ≥ 3

χ(G(n, d)) = k if d ∈ ((2k − 3) ln(k − 1), (2k − 2) ln(k − 1)), and (1.1)

χ(G(n, d)) ∈ {k, k + 1} if d ∈ [(2k − 2) ln(k − 1), (2k − 1) ln k]. (1.2)

These bounds imply that G(n, d) is k-colorable w.h.p. if d < (2k − 2) ln(k − 1), while 
G(n, d) fails to be k-colorable w.h.p. if d > (2k − 1) ln k. The main result of the present 
paper is

Theorem 1.1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that the following is 
true.

1. If d ≤ (2k − 1) ln k − 2 ln 2 − εk, then G(n, d) is k-colorable w.h.p.
2. If d ≥ (2k − 1) ln k − 1 + εk, then G(n, d) fails to be k-colorable w.h.p.

We have not attempted to explicitly extract or even optimize the error term εk.
Theorem 1.1 implies the following “threshold result”.

Corollary 1.2. There is a constant k0 > 0 such that for any integer k ≥ k0 there exists a 
number dk-col with the following two properties.

• If d < dk-col, then G(n, d) is k-colorable w.h.p.
• If d > dk-col, then G(n, d) fails to be k-colorable w.h.p.

To obtain Corollary 1.2, let εk as in Theorem 1.1 and consider the interval

Ik = ((2k − 1) ln k − 2 ln 2 − εk, (2k − 1) ln k − 1 + εk).

2 The chromatic number problems on GER(n, m) and on the binomial random graph (where each pair of 
vertices is connected with probability p = m/

(n
2
)

independently) turn out to be equivalent [22, Chapter 1].
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