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A homomorphism from a graph X to a graph Y is an ad-
jacency preserving map f : V (X) → V (Y ). We consider a 
nonlocal game in which Alice and Bob are trying to convince 
a verifier with certainty that a graph X admits a homo-
morphism to Y . This is a generalization of the well-studied 
graph coloring game. Via systematic study of quantum ho-
momorphisms we prove new results for graph coloring. Most 
importantly, we show that the Lovász theta number of the 
complement is a lower bound on the quantum chromatic num-
ber, the latter of which is not known to be computable. We 
also show that some of our newly introduced graph parame-
ters, namely quantum independence and clique numbers, can 
differ from their classical counterparts while others, namely 
quantum odd girth, cannot. Finally, we show that quantum 
homomorphisms closely relate to zero-error channel capacity. 
In particular, we use quantum homomorphisms to construct 
graphs for which entanglement-assistance increases their one-
shot zero-error capacity.
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1. Introduction

The c-coloring game on a graph X consists of two players, Alice and Bob, attempting 
to convince a referee that they have a c-coloring of X [13,8]. The game is played as 
follows: the referee sends each of the players a vertex of X, and each player responds 
with a color from [c] = {1, 2, . . . , c}. To win, the players must respond with the same color 
when they are sent the same vertex, and with different colors when they are sent adjacent 
vertices. The players are not allowed to communicate during the game but may agree 
on a strategy beforehand. It can be easily seen that deterministic players with shared 
randomness (classical players) can win the c-coloring game on X with certainty if and 
only if there exists a c-coloring of X. On the other hand, players allowed to make quantum 
measurements on some shared entangled state can sometimes win the c-coloring game 
on X with certainty even when X admits no c-coloring. Thus the quantum chromatic 
number, χq(X), is defined to be the smallest c ∈ N such that quantum players can win 
the c-coloring game on X [2].

Quantum strategies for the coloring game and the quantum chromatic number have 
been well-studied [2,7,12,24,21]. However, many questions remain unanswered. For ex-
ample, it is not known whether χq(X) is computable, or whether there exists a family 
of graphs Xn such that limn→∞ χq(Xn) < ∞ but limn→∞ χ(Xn) = ∞. Furthermore, 
there are few lower bounds known for quantum chromatic number. The authors of [7]
have shown that the orthogonal rank of a graph is a lower bound on a restricted version 
of quantum chromatic number, but the only general lower bound known is the clique 
number of a graph.

A homomorphism from a graph X to a graph Y is a function, φ, from the vertex set 
of X, denoted V (X), to the vertex set of Y , denoted V (Y ), which preserves adjacency. 
More formally, φ : V (X) → V (Y ) is a homomorphism from X to Y if φ(x) ∼ φ(x′)
whenever x ∼ x′, where “∼” denotes adjacency. We will write X → Y if there exists 
a homomorphism from X to Y , and X � Y if not. It is straightforward to see that 
a homomorphism from a graph X to the complete graph on c vertices, denoted Kc, is 
equivalent to a c-coloring of X. Thus homomorphisms are a natural generalization of 
colorings. There is a well-developed and beautiful theory around graph homomorphisms 
[17,16], and the study of them has given rise to original results on graph coloring.

Echoing the way in which homomorphisms generalize colorings, we have defined a 
homomorphism game which generalizes the coloring game. To play the (X, Y )-homo-
morphism game for graphs X and Y , each player is sent a vertex of X, and must respond 
with a vertex of Y . In order to win, the players must respond with the same vertex of Y
when they are given the same vertex of X, and they must respond with adjacent vertices 
when given adjacent vertices. Similarly to the coloring game, classical players can win 
the (X, Y )-homomorphism game if and only if X → Y . If quantum players can win the 
(X, Y )-homomorphism game, then we say that there is a quantum homomorphism from 
X to Y and write X

q−→ Y .
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