

Journal of Combinatorial Theory, Series B 118 (2016) 284-290

Notes

A circuit characterization of graphic matroids

Donald K. Wagner

Mathematical, Computer, and Information Sciences Division, Office of Naval Research, Arlington, VA 22203, USA

ARTICLE INFO

Article history: Received 10 January 2014 Available online 10 February 2016

Keywords: Binary matroids Graphic matroids

ABSTRACT

It is shown that a binary matroid is graphic if and only if it does not contain four circuits that interact is a particular way. This result generalizes a theorem of Little and Sanjith for planar graphs.

Published by Elsevier Inc.

CrossMark

1. Introduction

There are several known characterizations of graphic matroids. Generally speaking, these characterizations fall into two types: excluded-minor characterizations such as those given by Tutte [14,15] and Bixby [1], and characterizations using properties of cocircuits such as those given by Bixby [2], Bixby and Cunningham [3], Fournier [4], Lemos [7], Lemos, Reid, and Wu [8], Mighton [10], Sachs [12], Tutte [16], and Welsh [17]. Perhaps surprisingly, there does not seem to be a characterization of graphic matroids that is naturally expressed in terms of the circuits of a matroid. (The recent work of Geelen and Gerards [5] arguably falls in this category in that it characterizes, via a system of linear equations, when a set of fundamental circuits of a given binary matroid corresponds to that of a graphic matroid.)

E-mail address: don.wagner@navy.mil.

This paper presents a new characterization of those binary matroids that are graphic. In particular, it is shown that a binary matroid is graphic if and only if it does not contain four circuits that interact in a particular way. This result generalizes a characterization of planar graphs given by Little and Sanjith [9].

To state the characterization requires a couple of definitions. Let C and D be distinct circuits of a matroid M. A non-empty subset A of C is an arc of C with respect to Dif $A \cup D$ contains at least two circuits, and A is minimal with respect to this property. (That is, $A \cup D$ is a *line* as defined by Tutte [15].) More generally, a non-empty subset A of C is an arc of C if there exists a circuit D such that A is an arc of C with respect to D. With respect to the arc A, C is the *primary* circuit and D is a *secondary* circuit.

Let A_1, A_2 , and A_3 be distinct arcs of a circuit C of a matroid M. The set $\{A_1, A_2, A_3\}$ is called *incompatible* if $A_1 \cap A_2 \cap A_3 \neq \emptyset$ and no one of A_1, A_2 , or A_3 is contained in the union of the other two.

The main theorem is the following.

Theorem 1. A binary matroid is graphic if and only if it does not contain an incompatible set of arcs. \Box

The next section contains the proof of Theorem 1. Any undefined matroid terminology is consistent with Oxley [11].

2. The proof

The first result of this section proves that no graphic matroid can contain an incompatible set of arcs, which is the easy direction of the proof of Theorem 1; this result is also in Little and Sanjith [9]. It is useful to observe the structure of arcs in graphic matroids. To this end, let G be a graph, and let M(G) be the corresponding graphic matroid. Then, each circuit of M(G) corresponds to the edge set of a cycle of G. Let C be a cycle of G, and let P be a subgraph of C such that the edge set of P is an arc of E(C). Since P is a subgraph of C, either P = C or P is the vertex-disjoint union of paths. Now, because arcs are minimal, in the latter case, it must be that P is a single path contained in C.

Lemma 2. No graphic matroid contains an incompatible set of arcs.

Proof. Suppose M is a graphic matroid that contains an incompatible set of arcs. Thus, there exists a graph G, a cycle C of G, and three paths P_1 , P_2 , and P_3 contained in C having an edge e in common, and such that there exists edges $e_1 \in P_1 - (P_2 \cup P_3)$, $e_2 \in P_2 - (P_1 \cup P_3)$, and $e_3 \in P_3 - (P_1 \cup P_2)$.

Since $e \in P_1 \cap P_2$, $P_1 \cup P_2$ is also a path properly contained in C. Moreover, observe that the edge e lies between e_1 and e_2 on $P_1 \cup P_2$. Since P_3 is a path contained in C and e_3 is not in $P_1 \cup P_2$, it follows that P_3 must also contain either e_1 or e_2 , a contradiction. \Box

Download English Version:

https://daneshyari.com/en/article/4656714

Download Persian Version:

https://daneshyari.com/article/4656714

Daneshyari.com