

Notes

A circuit characterization of graphic matroids

Donald K. Wagner
Mathematical, Computer, and Information Sciences Division, Office of Naval Research, Arlington, VA 22203, USA

```
A R T I C L E I N F O
```


Article history:

Received 10 January 2014
Available online 10 February 2016
Keywords:
Binary matroids
Graphic matroids

A B S TRACT

It is shown that a binary matroid is graphic if and only if it does not contain four circuits that interact is a particular way. This result generalizes a theorem of Little and Sanjith for planar graphs.

Published by Elsevier Inc.

1. Introduction

There are several known characterizations of graphic matroids. Generally speaking, these characterizations fall into two types: excluded-minor characterizations such as those given by Tutte [14,15] and Bixby [1], and characterizations using properties of cocircuits such as those given by Bixby [2], Bixby and Cunningham [3], Fournier [4], Lemos [7], Lemos, Reid, and Wu [8], Mighton [10], Sachs [12], Tutte [16], and Welsh [17]. Perhaps surprisingly, there does not seem to be a characterization of graphic matroids that is naturally expressed in terms of the circuits of a matroid. (The recent work of Geelen and Gerards [5] arguably falls in this category in that it characterizes, via a system of linear equations, when a set of fundamental circuits of a given binary matroid corresponds to that of a graphic matroid.)

[^0]This paper presents a new characterization of those binary matroids that are graphic. In particular, it is shown that a binary matroid is graphic if and only if it does not contain four circuits that interact in a particular way. This result generalizes a characterization of planar graphs given by Little and Sanjith [9].

To state the characterization requires a couple of definitions. Let C and D be distinct circuits of a matroid M. A non-empty subset A of C is an arc of C with respect to D if $A \cup D$ contains at least two circuits, and A is minimal with respect to this property. (That is, $A \cup D$ is a line as defined by Tutte [15].) More generally, a non-empty subset A of C is an arc of C if there exists a circuit D such that A is an arc of C with respect to D. With respect to the arc A, C is the primary circuit and D is a secondary circuit. Let A_{1}, A_{2}, and A_{3} be distinct arcs of a circuit C of a matroid M. The set $\left\{A_{1}, A_{2}, A_{3}\right\}$ is called incompatible if $A_{1} \cap A_{2} \cap A_{3} \neq \emptyset$ and no one of A_{1}, A_{2}, or A_{3} is contained in the union of the other two.

The main theorem is the following.

Theorem 1. A binary matroid is graphic if and only if it does not contain an incompatible set of arcs.

The next section contains the proof of Theorem 1. Any undefined matroid terminology is consistent with Oxley [11].

2. The proof

The first result of this section proves that no graphic matroid can contain an incompatible set of arcs, which is the easy direction of the proof of Theorem 1; this result is also in Little and Sanjith [9]. It is useful to observe the structure of arcs in graphic matroids. To this end, let G be a graph, and let $M(G)$ be the corresponding graphic matroid. Then, each circuit of $M(G)$ corresponds to the edge set of a cycle of G. Let C be a cycle of G, and let P be a subgraph of C such that the edge set of P is an arc of $E(C)$. Since P is a subgraph of C, either $P=C$ or P is the vertex-disjoint union of paths. Now, because arcs are minimal, in the latter case, it must be that P is a single path contained in C.

Lemma 2. No graphic matroid contains an incompatible set of arcs.
Proof. Suppose M is a graphic matroid that contains an incompatible set of arcs. Thus, there exists a graph G, a cycle C of G, and three paths P_{1}, P_{2}, and P_{3} contained in C having an edge e in common, and such that there exists edges $e_{1} \in P_{1}-\left(P_{2} \cup P_{3}\right)$, $e_{2} \in P_{2}-\left(P_{1} \cup P_{3}\right)$, and $e_{3} \in P_{3}-\left(P_{1} \cup P_{2}\right)$.

Since $e \in P_{1} \cap P_{2}, P_{1} \cup P_{2}$ is also a path properly contained in C. Moreover, observe that the edge e lies between e_{1} and e_{2} on $P_{1} \cup P_{2}$. Since P_{3} is a path contained in C and e_{3} is not in $P_{1} \cup P_{2}$, it follows that P_{3} must also contain either e_{1} or e_{2}, a contradiction.

https://daneshyari.com/en/article/4656714

Download Persian Version:

https://daneshyari.com/article/4656714

Daneshyari.com

[^0]: E-mail address: don.wagner@navy.mil.

