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1. Introduction

We prove a partial result towards Rota’s Conjecture [3].

Conjecture 1.1 (Rota). For each finite field F, there are, up to isomorphism, only finitely 
many excluded minors for the class of F-representable matroids.

A sequence (A1, B1), . . . , (An, Bn) of k-separations in a matroid is said to be nested
if A1 ⊂ A2 ⊂ · · · ⊂ An. We prove the following theorem.
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Theorem 1.2. Let F be a finite field of order q, let k be a positive integer, and let n =
tower(q, q, k, 6). Then no excluded minor for the class of F-representable matroids admits 
a sequence of n nested k-separations.

Here tower(a1, a2, . . . , an) = a
a··

·an

2
1 .

The special case of this result with k = 3 was proved by Oxley, Vertigan, and Whittle 
(personal communication).

We conclude the introduction with an application of Theorem 1.2 to branch-width; 
this corollary is proved in Section 6 where we also define branch-width.

Corollary 1.3. For any finite field F of order q and positive integer k, if M is an excluded 
minor for the class of F-representable matroids and M has branch-width k, then |M | ≤
tower(3, q, q, k, 6).

Corollary 1.3 improves the main result in [1] which gives a non-computable bound 
on |M |.

Our main result, Theorem 5.3, is an extension of Theorem 1.2 that involves repre-
sentabilty over several fields.

2. Preliminaries

We use the following standard notation: we denote the power set of a set E by 2E , and, 
if f is a function whose domain is a set E and X ⊆ E, then we denote {f(x) : x ∈ X}
by f(X).

We follow the terminology of Oxley [2], except we write |M | for the size of a ma-
troid M . For a finite field F, we define a represented matroid to be a pair (M, S)
where si(S) is a projective geometry over F and M is a restriction of S. For a rep-
resented matroid (M, S) and X ⊆ E(M), we denote clS(X) by span(X). For disjoint 
sets D, C ⊆ E(M), we call (M \ D/C, S/C) a minor of (M, S). For notational con-
venience we will usually refer to the represented matroid by M alone, and write SM

for S.
Let M be a matroid. For X, Y ⊆ E(M), we define

�M (X,Y ) = rM (X) + rM (Y ) − rM (X ∪ Y ) and

λM (X) = �M (X,E(M) −X).

Thus, if M is representable, then

�M (X,Y ) = rSM
(span(X) ∩ span(Y )).

It is well-known that λ is submodular; that is,

λM (X) + λM (Y ) ≥ λM (X ∩ Y ) + λM (X ∪ Y ).
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