

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Maximum even factors of graphs

Journal of Combinatorial

Theory

Fuyuan Chen $^{\rm a},$ Genghua ${\rm Fan}^{{\rm b},*,1}$

 ^a Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui 233030, China
^b Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350108, China

ARTICLE INFO

Article history: Received 31 December 2013 Available online 5 April 2016

Keywords: Even graph Spanning subgraph Large even factor 2-Factor

ABSTRACT

A spanning subgraph F of a graph G is called an even factor of G if each vertex of F has even degree at least 2 in F. Kouider and Favaron proved that if a graph G has an even factor, then it has an even factor F with $|E(F)| \geq \frac{9}{16}(|E(G)| + 1)$. In this paper we improve the coefficient $\frac{9}{16}$ to $\frac{4}{7}$, which is best possible. Furthermore, we characterize all the extremal graphs, showing that if $|E(H)| \leq \frac{4}{7}(|E(G)| + 1)$ for every even factor H of G, then G belongs to a specified class of graphs. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

The graphs considered in this paper are finite, undirected, and with no loops or multiple edges. The sets of vertices and edges of a graph G are denoted by V(G)and E(G), respectively. Let H be a subgraph of G and $v \in V(G)$. The *degree* of vin H, denoted by $d_H(v)$, is the number of vertices in H which are joined to v. When H = G, we simply use d(v) instead of $d_H(v)$. The *minimum degree* of G is denoted by

E-mail addresses: chenfuyuan19871010@163.com (F. Chen), fan@fzu.edu.cn (G. Fan).

¹ Research supported by NSFC Grant 11331003.

 $\label{eq:http://dx.doi.org/10.1016/j.jctb.2016.03.002} 0095-8956/©$ 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

Fig. 1. Examples showing that the bound is best possible.

 $\delta(G) = \min\{d(v) : v \in V(G)\}$. *H* is called a *spanning subgraph* of *G* if V(H) = V(G). A *factor* of *G* is a spanning subgraph of *G* in which each vertex has positive degree. An *even graph* is one in which each vertex has even degree. Thus an even factor of *G* is a spanning even subgraph in which each vertex has positive even degree. A 2-factor of *G* is an even factor in which each vertex has degree 2.

It is well known that a bridgeless cubic graph G has a 2-factor F with $|E(F)| = \frac{2}{3}|E(G)|$. What can we say about non-cubic graphs? Clearly, the condition $\delta(G) \ge 2$ does not imply that G has a 2-factor. Fleischner [2] showed that if G is a bridgeless graph with minimum degree $\delta(G) \ge 3$, then it has an even factor. Lai and Chen [4] showed that such graphs have an even factor F with $|E(F)| \ge \frac{2}{3}|E(G)|$. Replacing $\delta(G) \ge 3$ by "having an even factor" and dropping the requirement of bridgeless, Favaron and Kouider [1] showed that if a graph G has an even factor, then it has an even factor F with $|E(F)| \ge \frac{9}{16}(|E(G)| + 1)$. In the same paper [1], they gave the following examples illustrated in Fig. 1.

The graph G consists of m disjoint copies of K_4 (complete graph on 4 vertices) and a set of m-1 edges, in which $\delta(G) \geq 3$. It is easy to see that G has an even factor, but no even factor contains edges more than $\frac{4}{7}(|E(G)|+1)$. With these examples, Favaron and Kouider [1] were not sure that the coefficient $\frac{9}{16}$ they obtained is best possible and asked whether the best possible coefficient $\frac{4}{7}$ can be achieved. In this paper, we show that $\frac{4}{7}$ is achievable and characterize all the extremal graphs that achieve the coefficient $\frac{4}{7}$.

For an integer $m \ge 1$, let T_m be the graph obtained from m disjoint copies of K_4 by adding m-1 edges such that contracting every K_4 into a single vertex results in a tree of m-1 edges. The graphs in Fig. 1 are special cases in which the resulting tree is a path of length m-1. The following theorem is proved in the next section.

Theorem 1.1. If a graph G has an even factor, then it has an even factor F with $|E(F)| \ge \frac{4}{7}(|E(G)|+1)$. Moreover, if $|E(H)| \le \frac{4}{7}(|E(G)|+1)$ for every even factor H of G, then $G = T_m$, for some $m \ge 1$.

Another problem related to large even factors discussed in this paper is the one about the existence of large connected even factors. Catlin (see [5]) conjectured that if a graph G has a connected even factor, then it has a connected even factor F with $|E(F)| \ge \frac{2}{3}|E(G)|$. Li et al. [5] disproved the conjecture by constructing a class of graphs G that have connected even factors, but no connected even factor F with $|E(F)| \ge \frac{2}{3}|E(G)|$, and conjectured $\frac{3}{5}$ is the right coefficient for connected even factors in graphs that have connected even factors. We point out that the graphs in Fig. 1 do not have connected even factors. Having a connected even factor is a quite strong property. Determining whether Download English Version:

https://daneshyari.com/en/article/4656728

Download Persian Version:

https://daneshyari.com/article/4656728

Daneshyari.com