

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Möbius conjugation and convolution formulae $\stackrel{\diamond}{\Rightarrow}$

Suijie Wang

Institute of Mathematics, Hunan University, Changsha, China

ARTICLE INFO

Article history: Received 12 July 2012 Available online 29 May 2015

Keywords: Möbius conjugation Convolution formula Reciprocity theorem Characteristic polynomial Chromatic polynomial Tutte polynomial

ABSTRACT

Let P be a locally finite poset with the interval space $\operatorname{Int}(P)$, and R be a ring with identity. We shall introduce the Möbius conjugation μ^* sending each function $f: P \to R$ to an incidence function $\mu^*(f) : \operatorname{Int}(P) \to R$ such that $\mu^*(fg) = \mu^*(f) * \mu^*(g)$. Taking P to be the intersection poset of a hyperplane arrangement \mathcal{A} , we shall obtain a convolution identity for the number $r(\mathcal{A})$ of regions and the number $b(\mathcal{A})$ of relatively bounded regions, and a reciprocity theorem of the characteristic polynomial $\chi(\mathcal{A}, t)$ which gives a combinatorial interpretation of the values $|\chi(\mathcal{A}, -q)|$ for large primes q. Moreover, all known convolution identities on Tutte polynomials of matroids will be direct consequences after specializing the poset P and functions f, g.

@ 2015 Elsevier Inc. All rights reserved.

1. Möbius conjugation

We use the definitions and notations of posets from [12], and all posets in this paper are assumed to be locally finite. Let P be a poset and R a ring with identity. Denote by Int(P) the interval space of P and $\mathcal{I}(P, R) = \{\alpha : Int(P) \to R\}$ the incidence algebra of P whose multiplication structure is given by the convolution product, i.e., for any $\alpha, \beta \in \mathcal{I}(P, R)$ and $x \leq y$ in P,

Journal of Combinatorial

Theory

^{*} The author is partially supported by NSFC 11401196 *E-mail address:* wangsuiji@hnu.edu.cn.

S. Wang / Journal of Combinatorial Theory, Series B 115 (2015) 117-131

$$[\alpha * \beta](x, y) = \sum_{x \le z \le y} \alpha(x, z) \,\beta(z, y), \quad \forall \, \alpha, \beta \in \mathcal{I}(P, R).$$

Let \mathbb{R}^P be the ring of all functions $f: P \to \mathbb{R}$ whose ring structure is given by point-wise multiplication and addition. Define the *Möbius conjugation* $\mu^*: \mathbb{R}^P \to \mathcal{I}(P, \mathbb{R})$ to be

$$\mu^*(f) = \mu * \delta(f) * \zeta, \quad \forall \ f \in \mathbb{R}^P,$$

where ζ is the constant function $\zeta(x, y) = 1$ for $x \leq y$ in P, μ is the Möbius function of P, i.e., the convolution inverse of ζ , and the map $\delta : \mathbb{R}^P \to \mathcal{I}(P, \mathbb{R})$ is defined by $\delta(f)(x, y) = f(x)$ if x = y and 0 otherwise, for all $f \in \mathbb{R}^P$ and $x \leq y$ in P.

Theorem 1.1. With above settings, the map μ^* is a ring monomorphism, i.e.,

$$\mu^*(fg) = \mu^*(f) * \mu^*(g), \quad \forall f, g \in \mathbb{R}^P.$$

Proof. Given $f, g \in \mathbb{R}^P$, it is obvious that $\delta(fg) = \delta(f) * \delta(g)$, then

$$\mu^*(fg) = \mu * \delta(f) * \zeta * \mu * \delta(g) * \zeta = \mu^*(f) * \mu^*(g).$$

So μ^* is a homomorphism of rings. To prove the injectivity, suppose $\mu^*(f) = \mu^*(g)$ for some $f, g \in \mathbb{R}^P$. Multiplying ζ on the left-hand side and μ on the right-hand side respectively, we obtain that $\delta(f) = \delta(g)$. Thus f = g. \Box

2. Convolution formula on characteristic polynomials

A hyperplane arrangement \mathcal{A} in a vector space V is a finite collection of hyperplanes of V. The intersection semi-lattice $L(\mathcal{A})$ of \mathcal{A} is defined to be the collection of all nonempty intersections of hyperplanes in \mathcal{A} , whose partial order is given by the inverse of set inclusion. Namely,

$$L(\mathcal{A}) = \{ \cap_{H \in \mathcal{B}} H \mid \mathcal{B} \subseteq \mathcal{A} \},\$$

whose minimal element is $\hat{0} = \bigcap_{H \in \emptyset} H := V \in L(\mathcal{A})$. Artificially adding a maximal element $\hat{1} = \emptyset$ to $L(\mathcal{A})$, $L(\mathcal{A})$ then becomes a geometric lattice, denoted $L^*(\mathcal{A}) = L(\mathcal{A}) \cup \{\hat{1}\}$ and called the *reduced intersection lattice* of \mathcal{A} . With the assumptions dim $(\hat{1}) = \infty$ and $t^{\infty} = 0$, the *characteristic polynomial* $\chi(\mathcal{A}, t) \in \mathbb{C}[t]$ of \mathcal{A} can be written as

$$\chi(\mathcal{A}, t) := \sum_{X \in L(\mathcal{A})} \mu(\hat{0}, X) \, t^{\dim(X)} = \sum_{X \in L^*(\mathcal{A})} \mu(\hat{0}, X) \, t^{\dim(X)}.$$

118

Download English Version:

https://daneshyari.com/en/article/4656739

Download Persian Version:

https://daneshyari.com/article/4656739

Daneshyari.com