

Edge-colouring seven-regular planar graphs

Maria Chudnovsky ${ }^{\text {a, }}$, Katherine Edwards ${ }^{\text {a,2 }}$,
Ken-ichi Kawarabayashi ${ }^{\text {b,3 }}$, Paul Seymour ${ }^{\text {a,4 }}$
${ }^{\text {a }}$ Princeton University, Princeton, NJ 08544, United States
${ }^{\text {b }}$ National Institute of Informatics and JST ERATO Kawarabayashi Project, Japan

A R T I C L E I N F O

Article history:

Received 26 October 2012
Available online 9 June 2015

Keywords:

Edge-colouring
Planar graph
Four colour theorem
Discharging
Reducible configuration

A B S T R A C T

A conjecture due to the fourth author states that every d-regular planar multigraph can be d-edge-coloured, provided that for every odd set X of vertices, there are at least d edges between X and its complement. For $d=3$ this is the fourcolour theorem, and the conjecture has been proved for all $d \leq 8$, by various authors. In particular, two of us proved it when $d=7$; and then three of us proved it when $d=8$. The methods used for the latter give a proof in the $d=7$ case that is simpler than the original, and we present it here.
© 2015 Published by Elsevier Inc.

1. Introduction

Let G be a graph. (Graphs in this paper are finite, and may have loops or parallel edges.) If $X \subseteq V(G), \delta_{G}(X)=\delta(X)$ denotes the set of all edges of G with an end in X and an end in $V(G) \backslash X$. We say that G is oddly d-edge-connected if $|\delta(X)| \geq d$ for all

[^0]odd subsets X of $V(G)$. The following conjecture [8] was proposed by the fourth author in about 1973.
1.1. Conjecture. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G is oddly d-edge-connected.

The "only if" part is true, and some special cases of the "if" part of this conjecture have been proved.

- For $d=3$ it is the four-colour theorem, and was proved by Appel and Haken [1,2,7];
- for $d=4,5$ it was proved by Guenin [6];
- for $d=6$ it was proved by Dvorak, Kawarabayashi and Kral [4];
- for $d=7$ it was proved by the second and third authors and appears in the Master's thesis [5] of the former;
- for $d=8$ it was proved by three of us [3].

The methods of [3] can be adapted to yield a proof of the result for $d=7$, that is shorter and simpler than that of [5]. Since in any case the original proof appears only in a thesis, we give the new one here. Thus, we show

1.2. Every 7 -regular oddly 7 -edge-connected planar graph is 7 -edge-colourable.

All these proofs (for $d>3$), including ours, assume the truth of the result for $d-1$. Thus we need to assume the truth of the result for $d=6$. Some things that are proved in [3] are true for all d, and we sometimes cite results from that paper.

2. An unavoidable list of reducible configurations

Any 7-regular planar graph has parallel edges, and it is helpful to reformulate the problem in terms of the underlying simple graph; then we have a number for each edge, recording the number of parallel edges it represents. Let us say a d-target is a pair (G, m) with the following properties (where for $F \subseteq E(G), m(F)$ denotes $\sum_{e \in F} m(e)$):

- G is a simple graph drawn in the plane;
- $m(e) \geq 0$ is an integer for each edge e;
- $m(\delta(v))=d$ for every vertex v; and
- $m(\delta(X)) \geq d$ for every odd subset $X \subseteq V(G)$.

In this language, 1.1 says that for every d-target (G, m), there is a list of d perfect matchings of G such that every edge e of G is in exactly $m(e)$ of them. (The elements of a list need not be distinct.) If there is such a list we call it a d-edge-colouring, and say that (G, m) is d-edge-colourable. For an edge $e \in E(G)$, we call $m(e)$ the multiplicity

https://daneshyari.com/en/article/4656746

Download Persian Version:

https://daneshyari.com/article/4656746

Daneshyari.com

[^0]: E-mail address: pds@math.princeton.edu (P. Seymour).
 ${ }^{1}$ Supported by National Science Foundation grants DMS-1001091 and IIS-1117631.
 ${ }^{2}$ Supported by an NSERC PGS-D3 Fellowship PGSD3-409117-2011 and a Gordon Wu Fellowship.
 ${ }^{3}$ Partially supported by the Mitsubishi Foundation and by MEXT KAKENHI under Grant 24106008.
 ${ }^{4}$ Supported by ONR grant N00014-10-1-0680 and National Science Foundation grant DMS-0901075.

