

Diameter critical graphs

Po-Shen Loh ${ }^{\text {a, },}$, Jie Ma ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
${ }^{\text {b }}$ School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

A R T I C L E I N F O

Article history:

Received 25 June 2014
Available online 8 December 2015

Keywords:

Diameter
Critical
Murty-Simon conjecture
Extremal graph theory

A B S TRACT

A graph is called diameter- k-critical if its diameter is k, and the removal of any edge strictly increases the diameter. In this paper, we prove several results related to a conjecture often attributed to Murty and Simon, regarding the maximum number of edges that any diameter- k-critical graph can have. In particular, we disprove a longstanding conjecture of Caccetta and Häggkvist (that in every diameter-2-critical graph, the average edge-degree is at most the number of vertices), which promised to completely solve the extremal problem for diameter-2-critical graphs.
On the other hand, we prove that the same claim holds for all higher diameters, and is asymptotically tight, resolving the average edge-degree question in all cases except diameter- 2 . We also apply our techniques to prove several bounds for the original extremal question, including the correct asymptotic bound for diameter- k-critical graphs, and an upper bound of $\left(\frac{1}{6}+o(1)\right) n^{2}$ for the number of edges in a diameter-3-critical graph.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

An (x, y)-path is a path with endpoints x and y, and its length is its number of edges. We denote by $d_{G}(x, y)$ the smallest length of an (x, y)-path in a graph G, where we often drop the subscript if the graph G is clear from context. The diameter of G is the maximum of $d_{G}(x, y)$ over all pairs $\{x, y\}$. A graph G is said to be diameter-critical if for every edge $e \in G$, the deletion of e produces a graph $G-e$ with higher diameter.

The area of diameter-criticality is one of the oldest subjects of study in extremal graph theory, starting from papers of Erdős-Rényi [10], Erdős-Rényi-Sós [11], MurtyVijayan [20], Murty [17-19], and Ore [21] from the 1960's. Many problems in this domain were investigated, such as that of minimizing the number of edges subject to diameter and maximum-degree conditions (see, e.g., Erdős-Rényi [10], Bollobás [1,2], BollobásEldridge [3], Bollobás-Erdős [4]), controlling post-deletion diameter (Chung [8]), and vertex-criticality (Caccetta [5], Erdős-Howorka [9], Huang-Yeo [15], Chen-Füredi [7]), to name just a few.

The natural extremal problem of maximizing the number of edges (or equivalently, the average degree) in a diameter-critical graph also received substantial attention. Our work is inspired by the following long-standing conjecture of Ore [21], Plesník [22], Murty and Simon (see in [6]). A diameter- k-critical graph is a diameter-critical graph of diameter k.

Conjecture 1.1. For each n, the unique diameter-2-critical graph which maximizes the number of edges is the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.

Successively stronger estimates were proved in the 1980's by Plesník [22], CacettaHäggkvist [6], and Fan [12], culminating in a breakthrough by Füredi [13], who used a clever application of the Ruzsa-Szemerédi $(6,3)$ theorem to prove the exact (nonasymptotic) result for large n. As current quantitative bounds on the $(6,3)$ theorem are of tower-type, the constraint on n is quite intense, and there is interest in finding an approach which is free of Regularity-type ingredients. For example, the recent survey by Haynes, Henning, van der Merwe, and Yeo [14] discusses recent work following a different approach based upon total domination, but we do not pursue that direction in this paper.

One hope for a regularity-free method was proposed at around the origin of the early investigation. In their original 1979 paper, Caccetta and Häggkvist posed a very elegant stronger conjecture for a related problem, which would establish the extremal number of edges in diameter-2-critical graphs for all n. For an edge e, let its edge-degree $d(e)$ be the sum of the degrees of its endpoints, and let $\overline{d(e)}$ be the average edge-degree over all edges, so that in terms of the total number of edges m,

$$
\overline{d(e)}=\frac{1}{m} \sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)=\frac{1}{m} \sum_{v \in V(G)} d_{v}^{2} .
$$

https://daneshyari.com/en/article/4656753

Download Persian Version:
https://daneshyari.com/article/4656753

Daneshyari.com

[^0]: E-mail addresses: ploh@cmu.edu (P.-S. Loh), jiema@ustc.edu.cn (J. Ma).
 ${ }^{1}$ Research supported in part by National Science Foundation grant DMS-1201380 and by a USA-Israel BSF Grant.

