## Notes

# Highly connected monochromatic subgraphs of two-colored complete graphs 

Tomasz Łuczak ${ }^{\text {a,b }}$<br>${ }^{\text {a }}$ Adam Mickiewicz University, Faculty of Mathematics \& CS, 61-614 Poznań, Poland<br>${ }^{\text {b }}$ Emory University, Department of Mathematics \& CS, Atlanta, GA 30322, USA

```
A R T I C L E I N F O
```


## Article history:

Received 15 March 2012
Available online 22 December 2015

## Keywords:

Connectivity
Monochromatic subgraph
Colorings

A B S T R A CT

We show that each 2-edge coloring of the complete graph on $n$ vertices leads to a monochromatic $k$-connected subgraph on at least $n-2(k-1)$ vertices, provided $n \geq 4 k-3$. It settles in the affirmative a conjecture of Bollobás and Gyárfás.
© 2015 Elsevier Inc. All rights reserved.

A conjecture of Bollobás and Gyárfás [1] (see also Gyárfás [3]) states that each 2 -coloring of the edges of the complete graph on $n$ vertices, where $n \geq 4 k-3$, leads to a $k$-connected monochromatic subgraph on at least $n-2(k-1)$ vertices. In this note we settle it in the affirmative in a slightly stronger version.

Theorem. Let $k \geq 2$ and $n \geq 4 k-3$. Then, in each 2-coloring of the edges of the complete graph on $n$ vertices either one can find a monochromatic $k$-connected subgraph on more than $n-2(k-1)$ vertices, or there exist monochromatic $k$-connected graphs on $n-2(k-1)$ vertices in both colors.

The following example from [1] shows that the inequalities in Theorem cannot be improved. Let us split the vertex set $[n]=\{1,2, \ldots, n\}$ of the complete graph into five

[^0]subsets $V_{i}, i=1,2, \ldots, 5$, where $\left|V_{i}\right|=k-1$ for $i=1,2,3,4$, and $\left|V_{5}\right|=n-4(k-1)$. Now let us color red the edges joining $V_{1}$ and $V_{2}$, those joining $V_{3}$ and $V_{4}$, as well as all the edges with both ends in the set $V_{2} \cup V_{3} \cup V_{5}$; all remaining edges we color blue. It is easy to see that the largest monochromatic $k$-connected subgraphs in this graph contains $V_{5}$ and two of the other sets.

Bollobás and Gyárfás [1] verified the conjecture for $k \leq 2$ and observed that it is enough to prove it for $n<7(k-1)$. Liu, Morris, and Prince proved it for $k=3$, and showed that it holds for $n \geq 13 k-15$ (see [4] and [5]). Recently, Fujita and Magnant [2] verified the conjecture for $n \geq 6.5(k-1)$.

We remark that, as noticed by Bollobás and Gyárfás [1] (see also [3]), the following result is a direct consequence of the theorem.

Corollary. Each 2-coloring of the complete graph on $n$ vertices leads to a monochromatic $\lceil n / 4\rceil$-connected subgraph.

Proof of Theorem. Let us suppose that the assertion of Theorem does not hold. Let $E(R) \cup E(B)$ be a coloring of the edges of the complete graph with vertex set [ $n$ ], where $n \geq 4 k-3$, with red and blue such that it contains no red $k$-connected subgraphs on at least $n-2 k+3$ vertices, no blue $k$-connected subgraph on at least $n-2 k+2$ vertices, and the coloring is chosen in such a way that it maximizes the number of red edges. By $R=([n], E(R))$ and $B=([n], E(B))$ we denote the red and blue graphs respectively. In order to get a contradiction we state and verify a number of claims.

Claim 1. $R$ contains at most one maximal $(k-1)$-connected subgraph with at least $n-2 k+2$ vertices.

Proof. Let $W_{1}$ and $W_{2}$ be vertex sets of two maximal $(k-1)$-connected subgraphs of $R$, each of size at least $n-2 k+2$. We call these subgraphs $F_{1}$ and $F_{2}$ respectively. Since the subgraph spanned in $R$ by $W_{1} \cup W_{2}$ is not $(k-1)$-connected, it contains a cut $S$, $|S| \leq k-2$. But both $F_{1}$ and $F_{2}$ are $(k-1)$-connected, so $S$ separates $W_{1} \backslash S$ from $W_{2} \backslash S$ and contains all vertices from $W_{1} \cap W_{2}$. But then the sets $W_{1} \backslash S$ and $W_{2} \backslash S$ span in $B$ the complete bipartite graph $F$ on at least

$$
\begin{aligned}
\left|W_{1} \cup W_{2}\right|-|S| & =\left|W_{1}\right|+\left|W_{2}\right|-\left|W_{1} \cap W_{2}\right|-|S| \\
& \geq n-2 k+2+n-2 k+2-k+2-k+2 \\
& \geq n-2 k+5 \geq n-2 k+2
\end{aligned}
$$

vertices. Moreover, each set of the bipartition contains at

$$
n-2 k+2-(k-2) \geq k+1
$$

vertices, so $F$ is $k$-connected contradicting our assumption on the coloring.

# https://daneshyari.com/en/article/4656756 

Download Persian Version:

## https://daneshyari.com/article/4656756

## Daneshyari.com


[^0]:    E-mail address: tomasz@amu.edu.pl.
    http://dx.doi.org/10.1016/j.jctb.2015.11.006
    0095-8956/© 2015 Elsevier Inc. All rights reserved.

