

Notes

Every totally real algebraic integer is a tree eigenvalue

Justin Salez
Université Paris Diderot \& LPMA, France

A R T I C L E I N F O

Article history:

Received 20 February 2013
Available online 17 September 2014

Keywords:

Adjacency matrix
Tree
Eigenvalue
Totally real algebraic integer

A B S T R A C T

Graph eigenvalues are examples of totally real algebraic integers, i.e. roots of real-rooted monic polynomials with integer coefficients. Conversely, the fact that every totally real algebraic integer occurs as an eigenvalue of some finite graph is a deep and remarkable result, conjectured forty years ago by Hoffman, and proved seventeen years later by Estes. This short paper provides an independent and elementary proof of a stronger statement, namely that the graph may actually be chosen to be a tree. As a by-product, our result implies that the atoms of the limiting spectrum of $n \times n$ symmetric matrices with independent Bernoulli $\left(\frac{c}{n}\right)$ entries are exactly the totally real algebraic integers. This settles an open problem raised by Ben Arous (2010).
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

By definition, the eigenvalues of a finite graph $G=(V, E)$ are the roots of the characteristic polynomial $\Phi_{G}(x):=\operatorname{det}(x I-A)$, where $A=\left\{A_{i, j}\right\}_{i, j \in V}$ is the adjacency matrix of G :

$$
A_{i, j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

URL: http://www.proba.jussieu.fr/~salez/.

Those eigenvalues capture a considerable amount of information about G. For a detailed account, see e.g. [3,2]. It follows directly from this definition that any graph eigenvalue is a totally real algebraic integer, i.e. a root of some real-rooted monic polynomial with integer coefficients. Remarkably enough, the converse is also true: every totally real algebraic integer is an eigenvalue of some finite graph. This deep result was conjectured forty years ago by Hoffman [5], and established seventeen years later by Estes [4], see also [1]. The present paper provides an independent, elementary proof of a stronger statement, namely that the graph may actually be chosen to be a tree.

Theorem 1. Every totally real algebraic integer is an eigenvalue of some finite tree.
Trees undoubtedly play a crucial role in many aspects of graph theory. We therefore believe that the strengthening provided by Theorem 1 may be of independent interest, beyond the fact that it provides a simpler proof of Hoffman's conjecture. In addition, Theorem 1 settles an open problem raised by Ben Arous [7, Problem 14], namely that of determining the set of atoms Σ of the limiting spectrum of $n \times n$ symmetric matrices with independent Bernoulli $\left(\frac{c}{n}\right)$ entries. Indeed, it easily follows from the log-Hölder continuity of the spectrum of integer matrices at algebraic numbers (see e.g. [8, Section 6]) that Σ is contained in the set of totally real algebraic integers. On the other hand, Σ contains all tree eigenvalues, as noted by Ben Arous. Theorem 1 precisely shows that those inner and outer bounds coincide.

2. Outline of the proof

Let T be a finite tree with a distinguished vertex o (the root). Removing o naturally yields a decomposition of T into smaller rooted trees $T_{1}, \ldots, T_{d}(d \in \mathbb{N})$ as depicted in the following diagram:

To such a rooted tree, let us associate the rational function

$$
\begin{equation*}
\mathfrak{f}_{T}(x)=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)}=1-\frac{\Phi_{T}(x)}{x \Phi_{T_{1}}(x) \cdots \Phi_{T_{d}}(x)} . \tag{1}
\end{equation*}
$$

Expressed in terms of this function, the classical recursion for the characteristic polynomial of trees (see e.g. [2, Proposition 5.1.1]) simply reads

$$
\begin{equation*}
\mathfrak{f}_{T}(x)=\frac{1}{x^{2}} \sum_{i=1}^{d} \frac{1}{1-\mathfrak{f}_{T_{i}}(x)}, \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/4656773

Download Persian Version:
https://daneshyari.com/article/4656773

Daneshyari.com

