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A graph embedded in a surface with all faces of size 4 is 
known as a quadrangulation. We extend the definition of 
quadrangulation to higher dimensions, and prove that any 
graph G which embeds as a quadrangulation in the real 
projective space Pn has chromatic number n + 2 or higher, 
unless G is bipartite. For n = 2 this was proved by Youngs 
(1996) [20]. The family of quadrangulations of projective 
spaces includes all complete graphs, all Mycielski graphs, 
and certain graphs homomorphic to Schrijver graphs. As 
a corollary, we obtain a new proof of the Lovász–Kneser 
theorem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A graph which embeds in the real projective plane P 2 so that every face is bounded by 
a walk of length 4 is called a (2-dimensional) projective quadrangulation. A remarkable 
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result of Youngs [20] asserts that the chromatic number of a projective quadrangulation 
is either 2 or 4. On the last page of [20], Youngs notes:

. . . it would be equally worthwhile to increase the chromatic number [of the graphs in 
question]. A possible step in this direction is to jump from a (2-dimensional) projective 
plane to a higher dimensional projective space. This may not be a fruitful path to 
follow, and the only evidence the author can suggest in its favor is that the 5-chromatic 
Mycielski graphs embed pleasantly in projective 3-space in a similar fashion to their 
4-chromatic counterparts in 2-space.

In this paper, we show that Youngs’ intuition was correct as we extend the lower bound 
in his theorem to the n-dimensional real projective space Pn. To do so, we extend the 
notion of quadrangulation to higher dimensions as follows (for definitions, see Section 2).

Let K be a generalised simplicial complex (there may be more than one simplex with 
the same set of vertices, unlike in the usual simplicial complex). A quadrangulation of K
is a spanning subgraph G of its 1-skeleton K(1) such that every (inclusionwise) maximal 
simplex of K induces a complete bipartite subgraph of G with at least one edge. If the 
polyhedron of K is homeomorphic to a topological space X, we say that the natural 
embedding of G in X is a quadrangulation of X.

Note that if K triangulates the projective plane, then a quadrangulation of K is a 
projective quadrangulation according to the usual definition recalled at the beginning 
of this section. Conversely, given a projective quadrangulation H, we can triangulate its 
faces and obtain H as a quadrangulation of the resulting generalised simplicial complex. 
More precisely, this is true if none of the faces of H contains a crosscap; otherwise, two 
edges of H will be doubled in the process. However, this difference between the two 
definitions is unimportant as long as we are interested in vertex colouring.

Our main result is the following generalisation of the lower bound of Youngs.

Theorem 1.1. If G is a non-bipartite quadrangulation of the n-dimensional projective 
space Pn, then χ(G) ≥ n + 2.

We show that the family of quadrangulations of projective spaces includes all complete 
graphs and all (generalised) Mycielski graphs. We also prove the following result about 
the Schrijver graph SG(n, k). (Recall that a graph G is homomorphic to a graph H
if there exists a mapping f : V (G) → V (H) such that f(u)f(v) ∈ E(H) whenever 
uv ∈ E(G); note that, in this case, χ(G) ≤ χ(H).)

Theorem 1.2. Let n > 2k and k ≥ 1. There exists a non-bipartite quadrangulation of 
Pn−2k that is homomorphic to SG(n, k).

Since the Schrijver graph SG(n, k) is a subgraph of the Kneser graph KG(n, k), The-
orems 1.1 and 1.2 give an alternative proof of the Lovász–Kneser theorem [9], namely 
χ(KG(n, k)) ≥ n − 2k + 2.



Download English Version:

https://daneshyari.com/en/article/4656777

Download Persian Version:

https://daneshyari.com/article/4656777

Daneshyari.com

https://daneshyari.com/en/article/4656777
https://daneshyari.com/article/4656777
https://daneshyari.com

