A faster algorithm to recognize even-hole-free graphs **

Hsien-Chih Chang ${ }^{\mathrm{a}, 1}$, Hsueh-I Lu ${ }^{\mathrm{b}, 2}$
a Department of Computer Science, University of Illinois at Urbana-Champaign, $U S A$
b Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

A R T I C L E I N F O

Article history:

Received 10 August 2013
Available online 11 February 2015

Keywords:

Even hole
Decomposition-based detection algorithm
Extended clique tree
2-join
Star-cutset
Diamond
Beetle
Tracker

A B S TRACT

We study the problem of determining whether an n-node graph G contains an even hole, i.e., an induced simple cycle consisting of an even number of nodes. Conforti, Cornuéjols, Kapoor, and Vušković gave the first polynomial-time algorithm for the problem, which runs in $O\left(n^{40}\right)$ time. Later, Chudnovsky, Kawarabayashi, and Seymour reduced the running time to $O\left(n^{31}\right)$. The best previously known algorithm for the problem, due to da Silva and Vušković, runs in $O\left(n^{19}\right)$ time. In this paper, we solve the problem in $O\left(n^{11}\right)$ time via a decomposition-based algorithm that relies on the decomposition theorem of da Silva and Vušković. Moreover, if G contains

[^0]even holes, then our algorithm also outputs an even hole of G in $O\left(n^{11}\right)$ time.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For any graphs G and F, we say that G contains F if F is isomorphic to an induced subgraph of G. If G does not contain F, then G is F-free. For any family \mathbb{F} of graphs, G is \mathbb{F}-free if G is F-free for each graph F in \mathbb{F}. A hole is an induced simple cycle consisting of at least four nodes. A hole is even (respectively, odd) if it consists of an even (respectively, odd) number of nodes. Even-hole-free graphs have been extensively studied in the literature (see, e.g., $[1,13-15,20,21,30,38]$). See Vušković [43] for a recent survey. This paper studies the problem of determining whether a graph contains even holes. Let n be the number of nodes of the input graph. Conforti, Cornuéjols, Kapoor, and Vušković $[12,16]$ gave the first polynomial-time algorithm for the problem, which runs in $O\left(n^{40}\right)$ time [7]. Later, Chudnovsky, Kawarabayashi, and Seymour [7] reduced the running time to $O\left(n^{31}\right)$. Chudnovsky et al. [7] also observed that the running time can be further reduced to $O\left(n^{15}\right)$ as long as prisms can be detected efficiently, but Maffray and Trotignon [31] showed that detecting prisms is NP-hard. The best previously known algorithm for the problem, due to da Silva and Vušković [21], runs in $O\left(n^{19}\right)$ time. We solve the problem in $O\left(n^{11}\right)$ time, as stated in the following theorem.

Theorem 1.1. It takes $O\left(m^{3} n^{5}\right)$ time to determine whether an n-node m-edge connected graph contains even holes.

Technical overview. The $O\left(n^{40}\right)$-time algorithm of Conforti et al. [16] is based on their decomposition theorem [15] stating that a connected even-hole-free graph either (i) is an extended clique tree, or (ii) contains non-path 2-joins or k-star-cutsets with $k \in\{1,2,3\}$. The main body of their algorithm recursively decomposes the input graph G into a list \mathbb{L} of a polynomial number of smaller or simpler graphs using non-path 2-joins or k-starcutsets with $k \in\{1,2,3\}$ until each graph in \mathbb{L} does not contain any of the mentioned cutsets. Since even holes in extended clique trees can be detected in polynomial time, it suffices for their algorithm to ensure the even-hole-preserving condition of \mathbb{L} : G is even-hole-free if and only if all graphs in \mathbb{L} are even-hole-free. To ensure the condition of \mathbb{L}, their algorithm requires a cleaning process to either detect an even hole in G or remove bad structures from G before obtaining \mathbb{L} from G. The $O\left(n^{31}\right)$-time algorithm of Chudnovsky et al. [7], which is not based upon any decomposition theorem but still requires the cleaning process, looks for even holes directly. (The algorithms of Chudnovsky et al. [6] for recognizing perfect graphs are also of this type of non-decomposition-based algorithms.) The $O\left(n^{19}\right)$-time algorithm of da Silva and Vušković [21], adopting the

https://daneshyari.com/en/article/4656781

Download Persian Version:

https://daneshyari.com/article/4656781

Daneshyari.com

[^0]: 4h The current version slightly improves upon the preliminary version [4] appeared in SODA 2012: (a) The time complexity for recognizing even-hole-free n-node m-edge graphs G is reduced from $O\left(m^{2} n^{7}\right)$ to $O\left(m^{3} n^{5}\right)$, which is an improvement if $m=o\left(n^{2}\right)$; and (b) if G contains even holes, then the current version shows how to output an even hole of G also in $O\left(m^{3} n^{5}\right)$ time.

 E-mail addresses: hchang17@illinois.edu (H.-C. Chang), hil@csie.ntu.edu.tw (H.-I. Lu). URL: http://www.csie.ntu.edu.tw/~hil (H.-I. Lu).
 ${ }^{1}$ This research was performed while this author was affiliated with Department of Computer Science and Information Engineering, National Taiwan University.
 ${ }^{2}$ This author also holds joint appointments in the Graduate Institute of Networking and Multimedia and the Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University. Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC. Research of this author is supported in part by NSC grant 101-2221-E-002-062-MY3.

