Ore's conjecture on color-critical graphs is almost true

Alexandr Kostochka ${ }^{\text {a,b,1 }}$, Matthew Yancey ${ }^{\text {c,2 }}$
${ }^{a}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
${ }^{\text {b }}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

A R T I C L E I N F O

Article history:

Received 4 September 2012
Available online 16 June 2014

Keywords:

Graph coloring
k-critical graphs
Sparse graphs

Abstract

A graph G is k-critical if it has chromatic number k, but every proper subgraph of G is $(k-1)$-colorable. Let $f_{k}(n)$ denote the minimum number of edges in an n-vertex k-critical graph. We give a lower bound, $f_{k}(n) \geq F(k, n)$, that is sharp for every $n=1(\bmod k-1)$. The bound is also sharp for $k=4$ and every $n \geq 6$. The result improves a bound by Gallai and subsequent bounds by Krivelevich and Kostochka and Stiebitz, and settles the corresponding conjecture by Gallai from 1963. It establishes the asymptotics of $f_{k}(n)$ for every fixed k. It also proves that the conjecture by Ore from 1967 that for every $k \geq 4$ and $n \geq k+2$, $f_{k}(n+k-1)=f_{k}(n)+\frac{k-1}{2}\left(k-\frac{2}{k-1}\right)$ holds for each $k \geq 4$ for all but at most $k^{3} / 12$ values of n. We give a polynomialtime algorithm for $(k-1)$-coloring of a graph G that satisfies $|E(G[W])|<F(k,|W|)$ for all $W \subseteq V(G),|W| \geq k$. We also present some applications of the result.

Published by Elsevier Inc.

[^0]
1. Introduction

A proper k-coloring, or simply k-coloring, of a graph $G=(V, E)$ is a function $f: V \rightarrow$ $\{1,2, \ldots, k\}$ such that for each $u v \in E, f(u) \neq f(v)$. A graph G is k-colorable if there exists a k-coloring of G. The chromatic number, $\chi(G)$, of a graph G is the smallest k such that G is k-colorable. A graph G is k-chromatic if $\chi(G)=k$.

A graph G is k-critical if G is not $(k-1)$-colorable, but every proper subgraph of G is $(k-1)$-colorable. Then every k-critical graph has chromatic number k and every k-chromatic graph contains a k-critical subgraph. This means that some problems for k-chromatic graphs may be reduced to problems for k-critical graphs, whose structure is more restricted. For example, every k-critical graph is 2 -connected and $(k-1)$-edgeconnected. Critical graphs were first defined and used by Dirac [4-6] in 1951-1952.

The only 1 -critical graph is K_{1}, and the only 2 -critical graph is K_{2}. The only 3 -critical graphs are the odd cycles. For every $k \geq 4$ and every $n \geq k+2$, there exists a k-critical n-vertex graph. Let $f_{k}(n)$ be the minimum number of edges in a k-critical graph with n vertices. Since $\delta(G) \geq k-1$ for every k-critical n-vertex graph G,

$$
\begin{equation*}
f_{k}(n) \geq \frac{k-1}{2} n \tag{1}
\end{equation*}
$$

for all $n \geq k, n \neq k+1$. Equality is achieved for $n=k$ and for $k=3$ and n odd. Brooks' Theorem [3] implies that for $k \geq 4$ and $n \geq k+2$, the inequality in (1) is strict. In 1957, Dirac [8] asked to determine $f_{k}(n)$ and proved that for $k \geq 4$ and $n \geq k+2$,

$$
\begin{equation*}
f_{k}(n) \geq \frac{k-1}{2} n+\frac{k-3}{2} . \tag{2}
\end{equation*}
$$

The result is tight for $n=2 k-1$ and yields $f_{k}(2 k-1)=k^{2}-k-1$. Dirac used his bound to evaluate chromatic number of graphs embedded into fixed surfaces. Later, Kostochka and Stiebitz [17] improved (2) to

$$
\begin{equation*}
f_{k}(n) \geq \frac{k-1}{2} n+k-3 \tag{3}
\end{equation*}
$$

when $n \neq 2 k-1, k$. This yields $f_{k}(2 k)=k^{2}-3$ and $f_{k}(3 k-2)=\frac{3 k(k-1)}{2}-2$. In his fundamental papers [10,11], Gallai found exact values of $f_{k}(n)$ for $k+2 \leq n \leq 2 k-1$:

Theorem 1. (See Gallai [11].) If $k \geq 4$ and $k+2 \leq n \leq 2 k-1$, then

$$
f_{k}(n)=\frac{1}{2}((k-1) n+(n-k)(2 k-n))-1 .
$$

He also proved the following general bound for $k \geq 4$ and $n \geq k+2$:

$$
\begin{equation*}
f_{k}(n) \geq \frac{k-1}{2} n+\frac{k-3}{2\left(k^{2}-3\right)} n . \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/4656827

Download Persian Version:
https://daneshyari.com/article/4656827

Daneshyari.com

[^0]: E-mail addresses: kostochk@math.uiuc.edu (A. Kostochka), yancey1@illinois.edu (M. Yancey).
 ${ }^{1}$ Research of this author is supported in part by NSF grants DMS-0965587 and DMS-1266016 and by grants 12-01-00448 and 12-01-00631 of the Russian Foundation for Basic Research.
 ${ }^{2}$ Research of this author is partially supported by the Arnold O. Beckman Research Award of the University of Illinois at Urbana-Champaign and from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students."

