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A graph G is k-critical if it has chromatic number k, but 
every proper subgraph of G is (k − 1)-colorable. Let fk(n)
denote the minimum number of edges in an n-vertex k-critical 
graph. We give a lower bound, fk(n) ≥ F (k, n), that is 
sharp for every n = 1 (mod k − 1). The bound is also 
sharp for k = 4 and every n ≥ 6. The result improves 
a bound by Gallai and subsequent bounds by Krivelevich 
and Kostochka and Stiebitz, and settles the corresponding 
conjecture by Gallai from 1963. It establishes the asymptotics 
of fk(n) for every fixed k. It also proves that the conjecture 
by Ore from 1967 that for every k ≥ 4 and n ≥ k + 2, 
fk(n + k − 1) = fk(n) + k−1

2 (k − 2
k−1 ) holds for each k ≥ 4

for all but at most k3/12 values of n. We give a polynomial-
time algorithm for (k− 1)-coloring of a graph G that satisfies 
|E(G[W ])| < F (k, |W |) for all W ⊆ V (G), |W | ≥ k. We also 
present some applications of the result.
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1. Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V, E) is a function f : V →
{1, 2, . . . , k} such that for each uv ∈ E, f(u) �= f(v). A graph G is k-colorable if there 
exists a k-coloring of G. The chromatic number, χ(G), of a graph G is the smallest k
such that G is k-colorable. A graph G is k-chromatic if χ(G) = k.

A graph G is k-critical if G is not (k − 1)-colorable, but every proper subgraph of G
is (k − 1)-colorable. Then every k-critical graph has chromatic number k and every 
k-chromatic graph contains a k-critical subgraph. This means that some problems for 
k-chromatic graphs may be reduced to problems for k-critical graphs, whose structure 
is more restricted. For example, every k-critical graph is 2-connected and (k − 1)-edge-
connected. Critical graphs were first defined and used by Dirac [4–6] in 1951–1952.

The only 1-critical graph is K1, and the only 2-critical graph is K2. The only 3-critical 
graphs are the odd cycles. For every k ≥ 4 and every n ≥ k + 2, there exists a k-critical 
n-vertex graph. Let fk(n) be the minimum number of edges in a k-critical graph with n
vertices. Since δ(G) ≥ k − 1 for every k-critical n-vertex graph G,

fk(n) ≥ k − 1
2 n (1)

for all n ≥ k, n �= k+1. Equality is achieved for n = k and for k = 3 and n odd. Brooks’ 
Theorem [3] implies that for k ≥ 4 and n ≥ k+ 2, the inequality in (1) is strict. In 1957, 
Dirac [8] asked to determine fk(n) and proved that for k ≥ 4 and n ≥ k + 2,

fk(n) ≥ k − 1
2 n + k − 3

2 . (2)

The result is tight for n = 2k−1 and yields fk(2k−1) = k2−k−1. Dirac used his bound 
to evaluate chromatic number of graphs embedded into fixed surfaces. Later, Kostochka 
and Stiebitz [17] improved (2) to

fk(n) ≥ k − 1
2 n + k − 3 (3)

when n �= 2k − 1, k. This yields fk(2k) = k2 − 3 and fk(3k − 2) = 3k(k−1)
2 − 2. In his 

fundamental papers [10,11], Gallai found exact values of fk(n) for k + 2 ≤ n ≤ 2k − 1:

Theorem 1. (See Gallai [11].) If k ≥ 4 and k + 2 ≤ n ≤ 2k − 1, then

fk(n) = 1
2
(
(k − 1)n + (n− k)(2k − n)

)
− 1.

He also proved the following general bound for k ≥ 4 and n ≥ k + 2:

fk(n) ≥ k − 1
2 n + k − 3

2(k2 − 3)n. (4)
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