

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Ore's conjecture on color-critical graphs is almost true

Journal of Combinatorial

Theory

Alexandr Kostochka^{a,b,1}, Matthew Yancey^{c,2}

^a University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

^b Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

^c Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

A R T I C L E I N F O

Article history: Received 4 September 2012 Available online 16 June 2014

Keywords: Graph coloring k-critical graphs Sparse graphs

ABSTRACT

A graph G is k-critical if it has chromatic number k, but every proper subgraph of G is (k-1)-colorable. Let $f_k(n)$ denote the minimum number of edges in an n-vertex k-critical graph. We give a lower bound, $f_k(n) \ge F(k,n)$, that is sharp for every $n = 1 \pmod{k-1}$. The bound is also sharp for k = 4 and every $n \ge 6$. The result improves a bound by Gallai and subsequent bounds by Krivelevich and Kostochka and Stiebitz, and settles the corresponding conjecture by Gallai from 1963. It establishes the asymptotics of $f_k(n)$ for every fixed k. It also proves that the conjecture by Ore from 1967 that for every $k \ge 4$ and $n \ge k+2$, $f_k(n+k-1) = f_k(n) + \frac{k-1}{2}(k-\frac{2}{k-1})$ holds for each $k \ge 4$ for all but at most $k^3/12$ values of n. We give a polynomialtime algorithm for (k-1)-coloring of a graph G that satisfies |E(G[W])| < F(k, |W|) for all $W \subseteq V(G)$, $|W| \ge k$. We also present some applications of the result.

Published by Elsevier Inc.

E-mail addresses: kostochk@math.uiuc.edu (A. Kostochka), yancey1@illinois.edu (M. Yancey).

 $^{^1}$ Research of this author is supported in part by NSF grants DMS-0965587 and DMS-1266016 and by grants 12-01-00448 and 12-01-00631 of the Russian Foundation for Basic Research.

² Research of this author is partially supported by the Arnold O. Beckman Research Award of the University of Illinois at Urbana–Champaign and from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students."

1. Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V, E) is a function $f: V \to \{1, 2, \ldots, k\}$ such that for each $uv \in E$, $f(u) \neq f(v)$. A graph G is k-colorable if there exists a k-coloring of G. The chromatic number, $\chi(G)$, of a graph G is the smallest k such that G is k-colorable. A graph G is k-chromatic if $\chi(G) = k$.

A graph G is k-critical if G is not (k-1)-colorable, but every proper subgraph of G is (k-1)-colorable. Then every k-critical graph has chromatic number k and every k-chromatic graph contains a k-critical subgraph. This means that some problems for k-chromatic graphs may be reduced to problems for k-critical graphs, whose structure is more restricted. For example, every k-critical graph is 2-connected and (k-1)-edge-connected. Critical graphs were first defined and used by Dirac [4–6] in 1951–1952.

The only 1-critical graph is K_1 , and the only 2-critical graph is K_2 . The only 3-critical graphs are the odd cycles. For every $k \ge 4$ and every $n \ge k+2$, there exists a k-critical *n*-vertex graph. Let $f_k(n)$ be the minimum number of edges in a k-critical graph with *n* vertices. Since $\delta(G) \ge k-1$ for every k-critical *n*-vertex graph G,

$$f_k(n) \ge \frac{k-1}{2}n\tag{1}$$

for all $n \ge k$, $n \ne k+1$. Equality is achieved for n = k and for k = 3 and n odd. Brooks' Theorem [3] implies that for $k \ge 4$ and $n \ge k+2$, the inequality in (1) is strict. In 1957, Dirac [8] asked to determine $f_k(n)$ and proved that for $k \ge 4$ and $n \ge k+2$,

$$f_k(n) \ge \frac{k-1}{2}n + \frac{k-3}{2}.$$
 (2)

The result is tight for n = 2k - 1 and yields $f_k(2k - 1) = k^2 - k - 1$. Dirac used his bound to evaluate chromatic number of graphs embedded into fixed surfaces. Later, Kostochka and Stiebitz [17] improved (2) to

$$f_k(n) \ge \frac{k-1}{2}n + k - 3$$
 (3)

when $n \neq 2k - 1, k$. This yields $f_k(2k) = k^2 - 3$ and $f_k(3k - 2) = \frac{3k(k-1)}{2} - 2$. In his fundamental papers [10,11], Gallai found exact values of $f_k(n)$ for $k + 2 \le n \le 2k - 1$:

Theorem 1. (See Gallai [11].) If $k \ge 4$ and $k + 2 \le n \le 2k - 1$, then

$$f_k(n) = \frac{1}{2} \big((k-1)n + (n-k)(2k-n) \big) - 1.$$

He also proved the following general bound for $k \ge 4$ and $n \ge k + 2$:

$$f_k(n) \ge \frac{k-1}{2}n + \frac{k-3}{2(k^2-3)}n.$$
 (4)

Download English Version:

https://daneshyari.com/en/article/4656827

Download Persian Version:

https://daneshyari.com/article/4656827

Daneshyari.com