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1. Introduction

In this paper, we consider the following problem: given a graph G, how many colours
do we need to colour the edges of G in such a way that every cycle gets “many” colours?
Of course, the answer to this question depends on the precise meaning of “many”. If we
require that each cycle v of length [ of G gets [ colours, i.e., every cycle is a rainbow,
then the minimum number of colours needed is equal to the maximum size of a block
of G, as two edges of G belong to a common cycle if and only if they belong to the same
block. If we require that every cycle gets at least 2 colours, i.e., every colour class induces
a forest, then the minimum number of colours needed is the arboricity Arb(G) of G, and
its determination is solved by the well-known Nash-Williams’ theorem we recall now.

Denote by V(G) and E(G) the vertex set and the edge set of G. Also denote by
|G| = |V(G)] (resp. ||G|| = |E(G)]|) the order of G (resp. size). For A C V(G) denote by
G[A4] the subgraph of G induced by A. By Nash-Williams’ theorem [9,10], the arboricity
of a graph G is given by the formula:

_ IGIA]]l
Arb(G) = ACV{ICIJ?,}TA|>J|A| -1 (1)

Here we consider a generalization of these two extreme cases. A general form of our
problem is captured by the following:

Given an unbounded non-decreasing function f : N — N and an integer p, what is
the minimum number Ny (G, p) of colours needed to colour the edges of a graph G in
such a way that each cycle v gets at least min(f(|y]),p + 1) colours?

Thus for p =1 and f(n) > 2 we get N¢(G,p) = Arb(G). For an arbitrary graph G, it is
usually difficult to determine N;(G,p). Our interest is to find upper bound for N¢(G, p)
in terms of other graph parameters, and upper bound for N;(G, p) for some nice classes
of graphs and/or for some nice special functions f.

Many colouring parameters are bounded for proper minor closed classes of graphs. It
is natural to ask for which functions f is N;(G,p) bounded for any proper minor closed
class C of graphs. We shall prove (Lemma 1) that if f(2P~1) > p — 1 for some value
of p then there is a (quite small) minor closed class of graphs C, such that N¢(G,p) is
unbounded. On the other hand, we prove (Corollary 6) that if f(z) < [logy z] for all x
then Ny (G, p) is not only bounded on proper minor closed classes of graphs, but actually
bounded on a class C if and only if C has bounded expansion (to be defined in Section 3).

Next we consider the special function f(x) = z. For this special function, the param-
eter N¢(G,p + 1) is denoted as Arb,(G) and is called the generalized p-arboricity of G.
So Arb,(G) is the number of colours needed if we require that each cycle of G gets at
least p + 1 colours or is a rainbow if its length is smaller than p + 1. Note that if p =1,
then Arb,(G) is the arboricity Arb(G) of G. We shall relate the generalized p-arboricities
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