

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Journal of Combinatorial Theory

A characterization of a family of edge-transitive metacirculant graphs $\stackrel{\mbox{\tiny{\sc black}}}{\to}$

Cai Heng Li^{a,b}, Jiangmin Pan^c, Shu Jiao Song^{d,b}, Dianjun Wang^e

^a School of Mathematics and Statistics, Yunnan University, Kunming, PR China

^b School of Mathematics and Statistics, University of Western Australia, Australia

^c College of Mathematics and Statistics, Yunnan University of Finance and Economics, Kunming, PR China ^d Department of Mathematics, Beijing Jiaotong University, Beijing 100044,

^a Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

^e Department of Mathematical Sciences, Qinghua (Tsing Hua) University, Beijing 100084, PR China

ARTICLE INFO

Article history: Received 19 October 2010 Available online 4 March 2014

MSC: 20B15 20B30 05C25

Keywords: Edge-transitive Metacirculant Isomorphism

ABSTRACT

A characterization is given of the class of edge-transitive Cayley graphs of Frobenius groups $\mathbb{Z}_{r^d}:\mathbb{Z}_m$ with r an odd prime and m odd, of valency less than $2p_1$ with p_1 the smallest prime divisor of m. It is shown that either $(r^d, m) = (p, \frac{p-1}{2})$ or (29,7), or such a graph is a normal Cayley graph and half-transitive. This provides new construction of half-transitive graphs.

© 2014 Elsevier Inc. All rights reserved.

 $^{^{*}}$ This work forms a part of the third author's PhD project, and it was partially supported by the National Natural Science Foundation of China and an ARC Discovery Grant Project.

E-mail addresses: cai.heng.li@uwa.edu.au (C.H. Li), jmpan@ynu.edu.cn (J. Pan),

shujiao.song@gmail.com (S.J. Song), djwang@mail.tsinghua.edu.cn (D. Wang).

1. Introduction

By $\Gamma = (V, E)$ we mean a graph with vertex set V and edge set E. A graph Γ is called *X*-vertex-transitive or *X*-edge-transitive if $X \leq \operatorname{Aut} \Gamma$ is transitive on V or on E, respectively. A circulant is a graph Γ such that $\operatorname{Aut} \Gamma$ contains a cyclic subgroup which is transitive on V. A graph Γ is a metacirculant if $\operatorname{Aut} \Gamma$ contains a metacyclic subgroup that is transitive on V.

Edge-transitive circulants have been characterized by Kovács [11] and Li [15] independently. It would be a natural next step towards a characterization of edge-transitive metacirculants. Some special cases have been done in the literature: see [5] for the case of order a product of two primes; see [17] for the case of prime-power order; see [12] for the study of arc-regular dihedrants. In this paper, we characterize edge-transitive metacirculants that admit a vertex-transitive Frobenius subgroup $\mathbb{Z}_{r^d}:\mathbb{Z}_m$.

An arc of a graph Γ is an ordered pair of adjacent vertices. A graph Γ is arc-transitive if Aut Γ is transitive on the set of arcs of Γ . Obviously, an arc-transitive graph is edgetransitive. A graph $\Gamma = (V, E)$ is called half-transitive if Aut Γ is transitive on both Vand E, and intransitive on the arc set. Constructing and characterizing half-transitive graphs has received considerable attention in algebraic graph theory, see [1,18,19,22] for references. Edge-transitive graphs of valency at most 6 and restricted order have been characterized for various special cases, refer to [6–8,13,24]. It will be shown that most edge-transitive metacirculants of small valency that admits a vertex-transitive Frobenius automorphism subgroup $\mathbb{Z}_{r^d}:\mathbb{Z}_m$ are half-transitive, see Corollary 1.2.

A graph Γ is a *Cayley graph* if there exists a group G and a subset $1 \notin S \subset G$ with $S = S^{-1} = \{s^{-1} \mid s \in S\}$ such that the vertex set V can be identified with G and x is adjacent to y if and only if $yx^{-1} \in S$. This Cayley graph is denoted by Cay(G, S). It is known that a graph Γ is a Cayley graph of a group G if and only if $Aut \Gamma$ contains a subgroup that is isomorphic to G and regular on the vertex set, see [2, Lemma 16.3]. Further, if $Aut \Gamma$ contains a normal regular subgroup G then Γ is called a *normal Cayley graph* of G. The main result of this paper is the following theorem.

Theorem 1.1. Let $G = \langle a \rangle : \langle b \rangle \cong \mathbb{Z}_{r^d} : \mathbb{Z}_m$ be a Frobenius group, where r is an odd prime and m is an odd integer. Let Γ be a connected X-edge-transitive graph of valency val $\Gamma < 2p_1$, where p_1 is the smallest prime divisor of m, and X contains a vertex transitive subgroup isomorphic to G. Then one of the following statements holds:

(i) Aut $\Gamma = X = G: X_{\alpha} = G: \mathbb{Z}_k$ is soluble, $k \mid (r-1)$, there exists $\sigma \in Aut(G)$ of order k such that Γ is isomorphic to one of the following normal Cayley graphs:

$$\mathsf{Cay}(G,S_j), \quad where \ S_j = \left\{ b^j, b^{m-j} \right\}^{\langle \sigma \rangle}, \ (j,m) = 1, \ and \ 1 \leqslant j \leqslant m/2,$$

and Γ is half-transitive;

(ii) G = Z₁₁:Z₅, X = Z₁₁:Z₁₀, Aut Γ = PGL(2, 11), and Γ is arc-transitive of valency 4;
(iii) X is almost simple, and the triple (X, G, X_α) lies in Table 1.

Download English Version:

https://daneshyari.com/en/article/4656863

Download Persian Version:

https://daneshyari.com/article/4656863

Daneshyari.com