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In this paper, we show that for any two bases B and B′ of
a regular matroid, there is an element e ∈ B such that there
is a unique element f ∈ B′ for which both (B\{e})∪ {f} and
(B′\{f}) ∪ {e} are bases of M . This solves a problem posed
by White in 1980.
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1. Introduction

Let M be a matroid and let B and B′ be bases of M . We say that the triple (M,B,B′)
has the unique exchange property (UE) if there exists an element e ∈ B for which there
is a unique element f ∈ B′ such that both (B\{e}) ∪ {f} and (B′\{f}) ∪ {e} are bases
of M . We say that these bases are obtained from B and B′ by a unique exchange. In
this paper, we resolve a problem of White from 1980 in the affirmative by showing the
following:

Theorem 1.1. For any regular matroid M and any pair of bases B, B′, the triple
(M,B,B′) has the unique exchange property.

White’s problem is also listed as Problem 14.8.11 in Oxley’s list [2]. Note that the
answer to the above problem is negative for binary matroids in general. To see this, take
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Fig. 1. Two bases in AG(2, 3) not having the property (UE).

two disjoint bases in the affine geometry AG(3, 2) as shown in Fig. 1. Then it is seen
that these bases do not have the unique exchange property.

Until now, little progress had been made on this problem, although related work
in [1] and [8] can be found. To give a bit of background on the origins of the problem, we
give the following definitions introduced in [7]. Let B = (B1, B2, . . . , Bk) be a sequence
of bases of a matroid M . For another sequence of k bases B′ = (B′

1, B
′
2, . . . , B

′
k), we

write B � B′ whenever the sequence B′ may be obtained from B by a composition of
unique exchanges and permutations of the bases. We say that the sequences B and B′

are compatible if for each e ∈ M , the sets {Bi ∈ B | e ∈ Bi} and {B′
i ∈ B′ | e ∈ B′

i}
have the same cardinality. Clearly if B � B′, then B and B′ must be compatible. In [7,
Conjecture 8], it was conjectured that if B and B′ are compatible sequences of bases in
a regular matroid, then B � B′. The motivation behind this conjecture comes from the
study of the bracket ring of a matroid (see [5] and [6]). Very little progress has been made
on this conjecture, and indeed, just showing that any pair of bases in a regular matroid
has the unique exchange property is hard. This was mentioned as an open problem in [7].

To prove Theorem 1.1, we shall use the minimum counterexample approach. That
is, we shall assume that the theorem is false, and let (M,R,B) be a triple not having
the property (UE) where M is regular, R and B are bases, and |E(M)| is minimum
among all such triples. An easy proof shows that M cannot be graphic or cographic.
In Section 2.1, we show that M must be 3-connected. From this point onwards, the
proof of the above theorem relies heavily on the structure of regular matroids given by
Seymour’s decomposition theorem [3] which implies that 3-connected regular matroids
other than R10 can be built up via 3-sums of graphic or cographic matroids. Among
other things, this implies that M can be written as a 3-sum M = M1 ⊕M2 where M1
is either graphic or cographic. The basic strategy of the proof is to first determine what
the matroid M1 looks like in the graphic case. Much of the proof is spent doing this
(in Section 5). It turns out that M1 � M(K5\e). This can then be used to show that
M1 � M∗(K3,3) in the cographic case.

In Sections 7 and 8, we complete the proof of the theorem. Here we exploit the fact
that the “leaves” of M (defined in Section 7) have a specific structure. Of particular
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