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A graph is k-choosable if it can be colored whenever every vertex
has a list of at least k available colors. We prove that if cycles of
length at most four in a planar graph G are pairwise far apart,
then G is 3-choosable. This is analogous to the problem of Havel
regarding 3-colorability of planar graphs with triangles far apart.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. The concepts of list coloring and choos-
ability were introduced by Vizing [13] and independently by Erdős et al. [7]. A list assignment of G
is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. An L-coloring is
a function ϕ : V (G) → ⋃

v L(v) such that ϕ(v) ∈ L(v) for every v ∈ V (G) and ϕ(u) �= ϕ(v) whenever
u and v are adjacent vertices of G . If G admits an L-coloring, then it is L-colorable. A graph G is
k-choosable if it is L-colorable for every list assignment L such that |L(v)| � k for all v ∈ V (G). The
distance between two vertices is the length (number of edges) of a shortest path between them. The
distance d(H1, H2) between two subgraphs H1 and H2 is the minimum of the distances between
vertices v1 ∈ V (H1) and v2 ∈ V (H2).

The well-known Four Color Theorem (Appel and Haken [3,4]) states that every planar graph is
4-colorable. Similarly, Grötzsch [8] proved that every triangle-free planar graph is 3-colorable. For
some time, the question whether these results hold in the list coloring setting was open; finally,
Voigt [14,15] found a planar graph that is not 4-choosable, and a triangle-free planar graph that is
not 3-choosable. On the other hand, Thomassen [10,11] proved that every planar graph is 5-choosable
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and every planar graph of girth at least 5 is 3-choosable. Also, Kratochvíl and Tuza [9] observed that
every planar triangle-free graph is 4-choosable.

Motivated by Grötzsch’s result, Havel asked whether there exists a constant d such that if the
distance between any two triangles in a planar graph is at least d, then the graph is 3-colorable.
This question was open for many years, finally being answered in affirmative by Dvořák, Král’ and
Thomas [6] (although their bound on d is impractically large). Due to the result of Voigt [15], an
analogous question for 3-choosability needs also to restrict 4-cycles: does there exist a constant d
such that if the distance between any two (�4)-cycles in a planar graph is at least d, then the graph
is 3-choosable? We give a positive answer to this question:

Theorem 1. If G is a planar graph such that the distance between any two (�4)-cycles is at least 26, then G is
3-choosable.

This bound is quite reasonable compared to one given for Havel’s problem [6]. However, it is far
from the best known lower bound of 4, given by Aksionov and Mel’nikov [2].

2. Proof of Theorem 1

For a subgraph H of a graph G , let d(H) = minF d(H, F ), where the minimum ranges over all
(�4)-cycles F of G distinct from H . In the case that the graph G is not clear from the context, we
write dG(H) instead. Let t(G) = minH d(H), where the minimum ranges over all (�4)-cycles H of G .
A path of length k (or a k-path) is a path with k edges and k + 1 vertices. For a path or a cycle X , let
�(X) denote its length. Let r be the function defined by r(0) = 0, r(1) = 2, r(2) = 4, r(3) = 9, r(4) = 13
and r(5) = 16. For a path P of length at most 5, let r(P ) = r(�(P )). Let B = 26.

A relevant configuration is a triple (H, Q , f ), where H is a plane graph, Q is a subpath of the outer
face of H and f : V (H)\ V (Q ) → {2,3} is a function. A graph G with list assignment L and a specified
path P contains the relevant configuration (H, Q , f ) if there exists an isomorphism π between H and
a subgraph I of G (which we call the image of the configuration in G) such that π maps Q to I ∩ P ,
and |L(π(v))| = f (v) for every v ∈ V (H) \ V (Q ). Figs. 1 and 2 depict the relevant configurations that
are used in the proof of Theorem 1 using the following conventions. The graph H is drawn in the
figure. The path Q consists of the vertices drawn by full circles. The vertices to that f assigns value
2 are drawn by empty squares, and the vertices to that f assigns value 3 are drawn by empty circles.

Using the precoloring extension technique developed by Thomassen [11], we show the following
generalization of Theorem 1:

Theorem 2. Let G be a planar graph with the outer face C such that t(G) � B, and let P be a path such that
V (P ) ⊆ V (C). Let L be a list assignment such that

(S1) |L(v)| = 3 for all v ∈ V (G) \ V (C);
(S2) 2 � |L(v)| � 3 for all v ∈ V (C) \ V (P );
(S3) |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper coloring of the subgraph of G induced

by V (P );
(I) the vertices with lists of size two form an independent set;
(T) if uv w is a triangle, |L(u)| = 2 and v has a neighbor with list of size two distinct from u, then w has no

neighbor with list of size two distinct from u; and,
(Q) if a vertex v with list of size two has two neighbors w1 and w2 in P , then L(v) �= L(w1) ∪ L(w2).

Furthermore, assume that at least one of the following conditions is satisfied:

(OBSTa) �(P ) � 2 and all images in G of every relevant configuration drawn in Fig. 1 are L-colorable, or
(OBSTb) �(P ) � 5, d(P ) � r(P ) and all images in G of every relevant configuration drawn in Fig. 2 are

L-colorable.

Then G is L-colorable.
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