

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Excluding pairs of graphs

Journal of Combinatorial

Theory

Maria Chudnovsky^{a,1}, Alex Scott^b, Paul Seymour^{c,2}

 ^a Columbia University, New York, NY 10027, USA
^b Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK

^c Princeton University, Princeton, NJ 08544, USA

A R T I C L E I N F O

Article history: Received 4 February 2013 Available online 31 January 2014

Keywords: Induced subgraphs Ramsey theorem Cograph

ABSTRACT

For a graph G and a set of graphs \mathcal{H} , we say that G is \mathcal{H} -free if no induced subgraph of G is isomorphic to a member of \mathcal{H} . Given an integer P > 0, a graph G, and a set of graphs \mathcal{F} , we say that G admits an (\mathcal{F}, P) -partition if the vertex set of G can be partitioned into P subsets X_1, \ldots, X_P , so that for every $i \in \{1, \ldots, P\}$, either $|X_i| = 1$, or the subgraph of G induced by X_i is $\{F\}$ -free for some $F \in \mathcal{F}$.

Our first result is the following. For every pair (H, J) of graphs such that H is the disjoint union of two graphs H_1 and H_2 , and the complement J^c of J is the disjoint union of two graphs J_1^c and J_2^c , there exists an integer P > 0 such that every $\{H, J\}$ -free graph has an $(\{H_1, H_2, J_1, J_2\}, P)$ -partition. A similar result holds for tournaments, and this yields a short proof of one of the results of [1].

A cograph is a graph obtained from single vertices by repeatedly taking disjoint unions and disjoint unions in the complement. For every cograph there is a parameter measuring its complexity, called its *height*. Given a graph Gand a pair of graphs H_1, H_2 , we say that G is $\{H_1, H_2\}$ -split if $V(G) = X_1 \cup X_2$, where the subgraph of G induced by X_i is $\{H_i\}$ -free for i = 1, 2. Our second result is that for every integer k > 0 and pair $\{H, J\}$ of cographs each of height k+1, where neither of H, J^c is connected, there exists a pair of cographs (\tilde{H}, \tilde{J}) , each of height k, where neither of \tilde{H}^c, \tilde{J} is connected, such that every $\{H, J\}$ -free graph is $\{\tilde{H}, \tilde{J}\}$ -split. Our final result is a construction showing that if $\{H, J\}$ are graphs each with at least one edge, then for every r-vertex

0095-8956/\$ – see front matter @ 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jctb.2014.01.001

 $^{^1\,}$ Supported by NSF grants DMS-1001091 and IIS-1117631.

 $^{^2\,}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

induced subgraph of G is $\{H, J\}$ -split, but G does not admit an $(\{H, J\}, k)$ -partition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. Let G be a graph. For $X \subseteq V(G)$, we denote by G|X the subgraph of G induced by X. The complement of G, denoted by G^c , is the graph with vertex set V(G) such that two vertices are adjacent in G if and only if they are non-adjacent in G^c . A *clique* in G is a set of vertices all pairwise adjacent; and a *stable set* in G is a set of vertices all pairwise non-adjacent. For disjoint $X, Y \subseteq V(G)$, we say that X is *complete* (*anticomplete*) to Y if every vertex of X is adjacent (non-adjacent) to every vertex of Y. If |X| = 1, say $X = \{x\}$, we say "x is complete (anticomplete) to Y" instead of " $\{x\}$ is complete (anticomplete) to Y".

We denote by K_n the complete graph on n vertices, and by S_n the complement of K_n . A graph is *complete multipartite* if its vertex set can be partitioned into stable sets, all pairwise complete to each other. For graphs H and G we say that G contains H if some induced subgraph of G is isomorphic to H. Let \mathcal{F} be a set of graphs. We say that G is \mathcal{F} -free if G contains no member of \mathcal{F} . If $|\mathcal{F}| = 1$, say $\mathcal{F} = \{F\}$, we write "G is F-free" instead of "G is $\{F\}$ -free". For a pair of graphs $\{H_1, H_2\}$, we say that G is $\{H_1, H_2\}$ -split if $V(G) = X_1 \cup X_2$, and $G|X_i$ is H_i -free for i = 1, 2. We remind the reader that a split graph is a graph whose vertex set can be partitioned into a clique and a stable set; thus in our language split graphs are precisely the graphs that are $\{K_2, S_2\}$ -split.

Ramsey's theorem can be restated in the following way: for every pair of integers m, n > 0 there exists an integer P, such that for every $\{S_m, K_n\}$ -free graph G, V(G) can be partitioned into at most P well-understood parts (in fact, each part is a single vertex). One might ask whether a similar statement holds for more general pairs of graphs than just $\{S_m, K_n\}$ (adjusting the definition of "well-understood").

For instance, a result of [3] implies that if G is $\{C_4, C_4^c\}$ -free (where C_4 is a cycle on four vertices), then V(G) can be partitioned into three parts, each of which induces either a complete graph, or a graph with no edges, or a cycle of length five.

In [2] two of us made progress on this question, but to state the result we first need a definition. Given an integer P > 0, we say that a graph G admits an (\mathcal{F}, P) -partition if $V(X) = X_1 \cup \cdots \cup X_P$ such that for every $i \in \{1, \ldots, P\}$, either $|X_i| = 1$ or $G|X_i$ is $\{F\}$ -free for some $F \in \mathcal{F}$. Please note that the first alternative in the definition of an (\mathcal{F}, P) -partition (the condition that $|X_i| = 1$) is only necessary when no graph in \mathcal{F} has more than one vertex. We proved the following:

1.1. For every pair of graphs (H, J) such that H^c and J are complete multipartite, there exist integers k, P > 0 such that every $\{H, J\}$ -free graph admits a $(\{K_k, S_k\}, P)$ -partition.

and its immediate corollary:

Download English Version:

https://daneshyari.com/en/article/4656895

Download Persian Version:

https://daneshyari.com/article/4656895

Daneshyari.com