Exactly m-coloured complete infinite subgraphs

Bhargav P. Narayanan
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK

A R T I C L E I N F O

Article history:

Received 22 February 2013
Available online 14 February 2014

Keywords:

Exactly m-coloured graphs
Ramsey theory

Abstract

Given an edge colouring of a graph with a set of m colours, we say that the graph is exactly m-coloured if each of the colours is used. The question of finding exactly m-coloured complete subgraphs was first considered by Erickson in 1994; in 1999, Stacey and Weidl partially settled a conjecture made by Erickson and raised some further questions. In this paper, we shall study, for a colouring of the edges of the complete graph on \mathbb{N} with exactly k colours, how small the set of natural numbers m for which there exists an exactly m-coloured complete infinite subgraph can be. We prove that this set must have size at least $\sqrt{2 k}$; this bound is tight for infinitely many values of k. We also obtain a version of this result for colourings that use infinitely many colours.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A classical result of Ramsey [10] says that when the edges of a complete graph on a countably infinite vertex set are finitely coloured, one can always find a complete infinite subgraph all of whose edges have the same colour.

Ramsey's theorem has since been generalised in many ways; most of these generalisations are concerned with finding other monochromatic structures. For a survey of many of these generalisations, see the book of Graham, Rothschild and Spencer [8]. Ramsey

[^0]theory has witnessed many developments over the last fifty years and continues to be an area of active research today; see, for instance, [9,1,13,2].

Alternatively, anti-Ramsey theory, which originates in a paper of Erdős, Simonovits and Sós [5], is concerned with finding large "rainbow coloured" or "totally multicoloured" structures. Between these two ends of the spectrum, one could consider the question of finding structures which are coloured with exactly m different colours as was first done by Erickson [6]; it is this line of enquiry that we pursue here.

2. Our results

For a set X, denote by $X^{(2)}$ the set of all unordered pairs of elements of X; equivalently, $X^{(2)}$ is the complete graph on the vertex set X. As usual, $[n]$ will denote $\{1, \ldots, n\}$, the set of the first n natural numbers. By a colouring of a graph G, we will always mean a colouring of the edges of G.

Let $\Delta: \mathbb{N}^{(2)} \rightarrow[k]$ be a surjective k-colouring of the edges of the complete graph on the natural numbers with $k \geqslant 2$ colours. We say that a subset $X \subset \mathbb{N}$ is (exactly) m-coloured if $\Delta\left(X^{(2)}\right)$, the set of values attained by Δ on the edges with both endpoints in X, has size exactly m. Our aim in this paper is to study the set

$$
\mathcal{F}_{\Delta}:=\{m \in[k]: \exists X \subset \mathbb{N} \text { such that } X \text { is infinite and } m \text {-coloured }\} .
$$

Clearly, $k \in \mathcal{F}_{\Delta}$ as Δ is surjective. Ramsey's theorem tells us that $1 \in \mathcal{F}_{\Delta}$. Furthermore, Erickson [6] noted that a fairly straightforward application of Ramsey's theorem enables one to show that $2 \in \mathcal{F}_{\Delta}$ for any surjective k-colouring Δ with $k \geqslant 2$. He also conjectured that with the exception of 1,2 and k, no other elements are guaranteed to be in \mathcal{F}_{Δ} and that if $k>k^{\prime}>2$, then there is a surjective k-colouring Δ such that $k^{\prime} \notin \mathcal{F}_{\Delta}$. Stacey and Weidl [11] settled this conjecture in the case where k is much bigger than k^{\prime}. More precisely, for any $k^{\prime}>2$, they showed that there is a constant $C_{k^{\prime}}$ such that if $k>C_{k^{\prime}}$, then there is a surjective k-colouring Δ such that $k^{\prime} \notin \mathcal{F}_{\Delta}$.

In this note, we shall be interested in the set of possible sizes of \mathcal{F}_{Δ}. Since $\mathcal{F}_{\Delta} \subset[k]$, we have $\left|\mathcal{F}_{\Delta}\right| \leqslant k$ and it is easy to see that equality is in fact possible. Things are not so clear when we turn to the question of lower bounds. Let us define

$$
\psi(k):=\min _{\Delta: \mathbb{N}^{(2)} \rightarrow[k]}\left|\mathcal{F}_{\Delta}\right|
$$

We are able to prove the following lower bound for $\psi(k)$.
Theorem 1. Let $n \geqslant 2$ be the largest natural number such that $k \geqslant\binom{ n}{2}+1$. Then $\psi(k) \geqslant n$.
It is not hard to check that Theorem 1 is tight when $k=\binom{n}{2}+1$ for some $n \geqslant 2$. To this end, we consider the "small-rainbow colouring" Δ which colours all the edges with both endpoints in $[n]$ with $\binom{n}{2}$ distinct colours and all the remaining edges with the one

https://daneshyari.com/en/article/4656901

Download Persian Version:

https://daneshyari.com/article/4656901

Daneshyari.com

[^0]: E-mail address: b.p.narayanan@dpmms.cam.ac.uk.

