

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Exactly m-coloured complete infinite subgraphs

Journal of Combinatorial

Theory

Bhargav P. Narayanan

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK

ARTICLE INFO

Article history: Received 22 February 2013 Available online 14 February 2014

Keywords: Exactly *m*-coloured graphs Ramsey theory

ABSTRACT

Given an edge colouring of a graph with a set of m colours, we say that the graph is *exactly* m-coloured if each of the colours is used. The question of finding exactly m-coloured complete subgraphs was first considered by Erickson in 1994; in 1999, Stacey and Weidl partially settled a conjecture made by Erickson and raised some further questions. In this paper, we shall study, for a colouring of the edges of the complete graph on \mathbb{N} with exactly k colours, how small the set of natural numbers m for which there exists an exactly m-coloured complete infinite subgraph can be. We prove that this set must have size at least $\sqrt{2k}$; this bound is tight for infinitely many values of k. We also obtain a version of this result for colourings that use infinitely many colours.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A classical result of Ramsey [10] says that when the edges of a complete graph on a countably infinite vertex set are finitely coloured, one can always find a complete infinite subgraph all of whose edges have the same colour.

Ramsey's theorem has since been generalised in many ways; most of these generalisations are concerned with finding other monochromatic structures. For a survey of many of these generalisations, see the book of Graham, Rothschild and Spencer [8]. Ramsey

0095-8956/\$ – see front matter © 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jctb.2014.01.008

E-mail address: b.p.narayanan@dpmms.cam.ac.uk.

theory has witnessed many developments over the last fifty years and continues to be an area of active research today; see, for instance, [9,1,13,2].

Alternatively, anti-Ramsey theory, which originates in a paper of Erdős, Simonovits and Sós [5], is concerned with finding large "rainbow coloured" or "totally multicoloured" structures. Between these two ends of the spectrum, one could consider the question of finding structures which are coloured with exactly m different colours as was first done by Erickson [6]; it is this line of enquiry that we pursue here.

2. Our results

For a set X, denote by $X^{(2)}$ the set of all unordered pairs of elements of X; equivalently, $X^{(2)}$ is the complete graph on the vertex set X. As usual, [n] will denote $\{1, \ldots, n\}$, the set of the first n natural numbers. By a *colouring* of a graph G, we will always mean a colouring of the edges of G.

Let $\Delta : \mathbb{N}^{(2)} \to [k]$ be a surjective k-colouring of the edges of the complete graph on the natural numbers with $k \ge 2$ colours. We say that a subset $X \subset \mathbb{N}$ is (*exactly*) *m*-coloured if $\Delta(X^{(2)})$, the set of values attained by Δ on the edges with both endpoints in X, has size exactly m. Our aim in this paper is to study the set

 $\mathcal{F}_{\Delta} := \big\{ m \in [k] \colon \exists X \subset \mathbb{N} \text{ such that } X \text{ is infinite and } m \text{-coloured} \big\}.$

Clearly, $k \in \mathcal{F}_{\Delta}$ as Δ is surjective. Ramsey's theorem tells us that $1 \in \mathcal{F}_{\Delta}$. Furthermore, Erickson [6] noted that a fairly straightforward application of Ramsey's theorem enables one to show that $2 \in \mathcal{F}_{\Delta}$ for any surjective k-colouring Δ with $k \ge 2$. He also conjectured that with the exception of 1, 2 and k, no other elements are guaranteed to be in \mathcal{F}_{Δ} and that if k > k' > 2, then there is a surjective k-colouring Δ such that $k' \notin \mathcal{F}_{\Delta}$. Stacey and Weidl [11] settled this conjecture in the case where k is much bigger than k'. More precisely, for any k' > 2, they showed that there is a constant $C_{k'}$ such that if $k > C_{k'}$, then there is a surjective k-colouring Δ such that $k' \notin \mathcal{F}_{\Delta}$.

In this note, we shall be interested in the set of possible sizes of \mathcal{F}_{Δ} . Since $\mathcal{F}_{\Delta} \subset [k]$, we have $|\mathcal{F}_{\Delta}| \leq k$ and it is easy to see that equality is in fact possible. Things are not so clear when we turn to the question of lower bounds. Let us define

$$\psi(k) := \min_{\Delta: \mathbb{N}^{(2)} \to [k]} |\mathcal{F}_{\Delta}|.$$

We are able to prove the following lower bound for $\psi(k)$.

Theorem 1. Let $n \ge 2$ be the largest natural number such that $k \ge \binom{n}{2} + 1$. Then $\psi(k) \ge n$.

It is not hard to check that Theorem 1 is tight when $k = \binom{n}{2} + 1$ for some $n \ge 2$. To this end, we consider the "small-rainbow colouring" Δ which colours all the edges with both endpoints in [n] with $\binom{n}{2}$ distinct colours and all the remaining edges with the one

Download English Version:

https://daneshyari.com/en/article/4656901

Download Persian Version:

https://daneshyari.com/article/4656901

Daneshyari.com