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The direct product G × H of graphs G and H is defined by

V (G × H) = V (G) × V (H)

and

E(G × H) = {[
(u1, v1), (u2, v2)

]
: (u1, u2) ∈ E(G) and

(v1, v2) ∈ E(H)
}
.

In this paper, we will prove that

α(G × H) = max
{
α(G)|H|,α(H)|G|}

holds for all vertex-transitive graphs G and H , which provides
an affirmative answer to a problem posed by Tardif (1998) [11].
Furthermore, the structure of all maximum independent sets of
G × H is determined.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let G and H be two graphs. The direct product G × H of G and H is defined by

V (G × H) = V (G) × V (H)
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and

E(G × H) = {[
(u1, v1), (u2, v2)

]
: (u1, u2) ∈ E(G) and (v1, v2) ∈ E(H)

}
.

It is easy to see this product is commutative and associative, and the product of more than two graphs
is well defined. For a graph G , the products Gn = G × G × · · · × G is called the n-th power of G .

An interesting problem is the independence number of G × H . It is clear that if I is an independent
set of G or H , then the preimage of I under projections is an independent set of G × H , and so
α(G × H) � max{α(G)|H|,α(H)|G|}. Here |G| denotes the order of G , i.e., |V (G)|. It is natural to ask
whether the equality holds or not. In general, the equality does not hold for non-vertex-transitive
graphs (see [7]). So Tardif [11] posed the following problem.

Problem 1.1. (See Tardif [11].) Does the equality

α(G × H) = max
{
α(G)|H|,α(H)|G|}

hold for all vertex-transitive graphs G and H?

Furthermore, it immediately raises another interesting problem:

Problem 1.2. When α(G × H) = max{α(G)|H|,α(H)|G|}, is every maximum independent set of G × H
the preimage of an independent set of one factor under projections?

If the answer to Problem 1.2 is yes, we then say the direct product G × H is MIS-normal (maximum-
independent-set-normal). Furthermore, the direct product G1 × G2 ×· · ·× Gn is said to be MIS-normal
if every maximum independent set of it is the preimage of an independent set of one factor under
projections.

The two problems have received some attention. Frankl [6] and Valencia-Pabon and Vera [12]
solved Problem 1.1 for Kneser graphs and circular graphs, respectively. Ahlswede et al. [1] generalized
Frankl’s results. Ku and Wong [9] investigated the structure of maximum independent sets in direct
products of permutation graphs; Wang and Yu [13] proved that both Problems 1.1 and 1.2 have posi-
tive answers if one of G and H is a bipartite graph. Larose and Tardif [10] investigated the structures
of maximum independent sets in powers of circular graphs, Kneser graphs and truncated simplices.
For an arbitrary vertex-transitive graph G , they asked whether or not Gn is MIS-normal for all n � 2 if
G2 is MIS-normal. This question has been answered positively independently by Ku and McMillan [8]
and the author [15].

Given a graph G and a real number r, a fractional r-coloring of G is a mapping f which assigns
to each independent set I of G a real number f (I) ∈ [0,1] so that

∑
f (I) = r and for any vertex v ,∑

v∈I f (I) � 1. The fractional chromatic number χ f (G) of G is the minimum r such that G has a
fractional r-coloring. It is well known that if G is a vertex transitive graph, then χ f (G) = |V (G)|/α(G).
A generalization of Problem 1.1 is studied in [16], where the following question is asked: Is it true that
for any graphs G and H , χ f (G × H) = min{χ f (G),χ f (H)}? After the original version of this paper,
this question was answered positively in [17], which implies a positive solution to Problem 1.1.

In this paper we shall solve both Problem 1.1 and Problem 1.2. To state our results we need to
introduce some notations and notions.

For a graph G , let I(G) denote the set of all maximum independent sets of G . Given a subset A of
V (G), we define

NG(A) = {
b ∈ V (G): (a,b) ∈ E(G) for some a ∈ A

}
,

NG [A] = NG(A) ∪ A and NG [A] = V (G) − NG [A].
If G is clear from the context, for simplicity, we will omit the index G .

In [15], by the so-called “No-Homomorphism” lemma of Albertson and Collins [2] we proved the
following result.
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