

Available online at www.sciencedirect.com

Topology 45 (2006) 567-599

TOPOLOGY

www.elsevier.com/locate/top

Mixed toric residues and tropical degenerations

András Szenes^{a,*}, Michèle Vergne^b

^aBME Maths Institute, 1111 Budapest, Hungary ^bCentre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau, France

Received 30 November 2004

Abstract

Building on our earlier work on toric residues and reduction, we give a proof of the mixed toric residue conjecture of Batyrev and Materov. We simplify and streamline our technique of tropical degenerations, which allows one to interpolate between two localization principles: one appearing in the intersection theory of toric quotients and the other in the calculus of toric residues. This quickly leads to the proof of the conjecture, which gives a closed formula for the summation of a generating series whose coefficients represent a certain naive count of the numbers of rational curves on toric complete intersection Calabi–Yau manifolds.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Toric varieties; Residues; Tropical geometry; Mirror symmetry

0. Introduction

This paper is a follow-up to our paper [16], where we prove a conjecture of Batyrev and Materov, the Toric Residue Mirror Conjecture (TRMC). Here we extend our results, and show that they imply a generalization of this conjecture, the Mixed Toric Residue Mirror Conjecture (MTRMC), which is also due to Batyrev and Materov [3].

Roughly, these conjectures state that the generating function of certain intersection numbers of a sequence of toric varieties converges to a rational function, which can be obtained as a finite residue sum on a single toric variety. We first recall the TRMC in some detail. We start with an integral convex polytope $\Pi^{\mathfrak{B}}$ in a *d*-dimensional real vector space t endowed with a lattice of full rank $t_{\mathbb{Z}}$; we assume

^{*} Corresponding author.

E-mail address: szenes@math.bme.hu (A. Szenes).

^{0040-9383/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.top.2005.11.003

that the polytope contains the origin in its interior. Let the sequence $\mathfrak{B} = [\beta_1, \beta_2, \dots, \beta_n]$ be the set of vertices of this polytope, ordered in an arbitrary fashion. One can associate a *d*-dimensional polarized toric variety $(V^{\mathfrak{B}}, L^{\mathfrak{B}})$ to this data in the standard fashion [16].

There is another way to obtain toric varieties from this data, which generalizes the mirror duality of polytopes introduced by Batyrev [1]. Consider the sequence $\mathfrak{A} = [\alpha_1, \alpha_2, \ldots, \alpha_n]$, which is the Gale dual of \mathfrak{B} (cf. Section 1.3 for the construction). This is a sequence of integral vectors in the dual \mathfrak{a}^* of a certain r = n - d-dimensional vector space \mathfrak{a} , which is also endowed with a lattice of full rank: $\mathfrak{a}_{\mathbb{Z}}$; in this setup the sequence \mathfrak{A} spans a strictly convex cone Cone(\mathfrak{A}). The simplicial cones generated by \mathfrak{A} divide Cone(\mathfrak{A}) into open chambers. Each chamber corresponds to a *d*-dimensional orbifold toric variety $V_{\mathfrak{A}}(\mathfrak{c})$ (cf. [8]). An integral element $\alpha \in \mathfrak{a}^*$ specifies an orbi-line-bundle L_{α} over this variety; denote the first Chern class of L_{α} by $\chi(\alpha) \in H^2(V_{\mathfrak{A}}(\mathfrak{c}), \mathbb{Q})$. For the purposes of this introduction we assume that this correspondence induces the linear isomorphisms

$$\mathfrak{a}^* \cong H^2(V_{\mathfrak{A}}(\mathfrak{c}), \mathbb{R}) \text{ and } \mathfrak{a} \cong H_2(V_{\mathfrak{A}}(\mathfrak{c}), \mathbb{R}).$$

Now pick a chamber \mathfrak{c} which contains the vector $\kappa = \sum_{i=1}^{n} \alpha_i$ in its closure: $\kappa \in \overline{\mathfrak{c}}$. To each element $\lambda \in \mathfrak{a}_{\mathbb{Z}}$, one can associate a moduli space MP_{λ}, the so-called Morrison–Plesser space (cf. [12]), which is a compactification of the space of those maps from the projective line to the variety $V_{\mathfrak{A}}(\mathfrak{c})$ under which the image of the fundamental class is λ :

$$\{m: \mathbb{P}^1 \to V_{\mathfrak{A}}(\mathfrak{c}); m_*(\mathbb{P}^1]) = \lambda\}.$$

The varieties MP_{λ} are toric, and such that, again, to each integral element $\alpha \in \mathfrak{a}^*$ one can associate a line bundle L_{α} on MP_{λ} ; again we denote the corresponding Chern class in $H^2(MP_{\lambda})$ by $\chi(\alpha)$. The space MP_{λ} is defined to be empty, unless $\langle \alpha, \lambda \rangle \ge 0$ for every $\alpha \in \mathfrak{c}$. The set of vectors satisfying this condition forms a cone in \mathfrak{a} , which we denote by $\overline{\mathfrak{c}}^{\perp}$; this cone is called the *polar* cone of \mathfrak{c} .

The construction also provides a Poincare dual class

$$K_{\lambda} \in H^{2(\dim \operatorname{MP}_{\lambda} - d)}(\operatorname{MP}_{\lambda}, \mathbb{Q})$$

to the subspace of MP_{λ} of those maps which land in a generic zero-section *Y* of the line bundle L_{κ} . When $V_{\mathfrak{A}}(\mathfrak{c})$ is smooth, then *Y* is a Calabi–Yau manifold.

To probe the class K_{λ} , we fix a homogeneous polynomial $P(x_1, \ldots, x_n)$ of degree d in n variables, and consider the intersection numbers

$$\int_{\mathrm{MP}_{\lambda}} P(\chi(\alpha_1),\ldots,\chi(\alpha_n)) K_{\lambda},$$

which are to be interpreted as analogs of numbers of rational curves in *Y* subject to certain conditions specified by the polynomial *P*.

Now let $z_1, \ldots, z_n \in \mathbb{C}^*$, and form the Laurent series

$$\sum_{\lambda \in \mathfrak{a}_{\mathbb{Z}}} \int_{\mathrm{MP}_{\lambda}} P(\chi(\alpha_1), \dots, \chi(\alpha_n)) K_{\lambda} \prod_{i=1}^n z_i^{\langle \alpha_i, \lambda \rangle}.$$
(0.1)

Download English Version:

https://daneshyari.com/en/article/4657711

Download Persian Version:

https://daneshyari.com/article/4657711

Daneshyari.com