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Mixed toric residues and tropical degenerations
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Abstract

Building on our earlier work on toric residues and reduction, we give a proof of the mixed toric residue conjecture
of Batyrev and Materov. We simplify and streamline our technique of tropical degenerations, which allows one
to interpolate between two localization principles: one appearing in the intersection theory of toric quotients and
the other in the calculus of toric residues. This quickly leads to the proof of the conjecture, which gives a closed
formula for the summation of a generating series whose coefficients represent a certain naive count of the numbers
of rational curves on toric complete intersection Calabi–Yau manifolds.
� 2005 Elsevier Ltd. All rights reserved.
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0. Introduction

This paper is a follow-up to our paper [16], where we prove a conjecture of Batyrev and Materov,
the Toric Residue Mirror Conjecture (TRMC). Here we extend our results, and show that they imply a
generalization of this conjecture, the Mixed Toric Residue Mirror Conjecture (MTRMC), which is also
due to Batyrev and Materov [3].

Roughly, these conjectures state that the generating function of certain intersection numbers of a
sequence of toric varieties converges to a rational function, which can be obtained as a finite residue
sum on a single toric variety. We first recall the TRMC in some detail. We start with an integral convex
polytope �B in a d-dimensional real vector space t endowed with a lattice of full rank tZ; we assume

∗ Corresponding author.
E-mail address: szenes@math.bme.hu (A. Szenes).

0040-9383/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.top.2005.11.003

http://www.elsevier.com/locate/top
mailto:szenes@math.bme.hu


568 A. Szenes, M. Vergne / Topology 45 (2006) 567–599

that the polytope contains the origin in its interior. Let the sequence B = [�1, �2, . . . , �n] be the set of
vertices of this polytope, ordered in an arbitrary fashion. One can associate a d-dimensional polarized
toric variety (V B, LB) to this data in the standard fashion [16].

There is another way to obtain toric varieties from this data, which generalizes the mirror duality of
polytopes introduced by Batyrev [1]. Consider the sequence A= [�1, �2, . . . , �n], which is the Gale dual
ofB (cf. Section 1.3 for the construction). This is a sequence of integral vectors in the dual a∗ of a certain
r=n−d-dimensional vector space a, which is also endowed with a lattice of full rank: aZ; in this setup the
sequence A spans a strictly convex cone Cone(A). The simplicial cones generated by A divide Cone(A)

into open chambers. Each chamber corresponds to a d-dimensional orbifold toric variety VA(c) (cf. [8]).
An integral element � ∈ a∗ specifies an orbi-line-bundle L� over this variety; denote the first Chern class
of L� by �(�) ∈ H 2(VA(c), Q). For the purposes of this introduction we assume that this correspondence
induces the linear isomorphisms

a∗�H 2(VA(c), R) and a�H2(VA(c), R).

Now pick a chamber c which contains the vector � = ∑n
i=1�i in its closure: � ∈ c̄. To each element

� ∈ aZ, one can associate a moduli space MP�, the so-called Morrison–Plesser space (cf. [12]), which is
a compactification of the space of those maps from the projective line to the variety VA(c) under which
the image of the fundamental class is �:

{m : P1 → VA(c); m∗([P1]) = �}.
The varieties MP� are toric, and such that, again, to each integral element � ∈ a∗ one can associate a line
bundle L� on MP�; again we denote the corresponding Chern class in H 2(MP�) by �(�). The space MP�

is defined to be empty, unless 〈�, �〉�0 for every � ∈ c. The set of vectors satisfying this condition forms
a cone in a, which we denote by c̄⊥; this cone is called the polar cone of c.

The construction also provides a Poincare dual class

K� ∈ H 2(dim MP�−d)(MP�, Q)

to the subspace of MP� of those maps which land in a generic zero-section Y of the line bundle L�. When
VA(c) is smooth, then Y is a Calabi–Yau manifold.

To probe the class K�, we fix a homogeneous polynomial P(x1, . . . , xn) of degree d in n variables,
and consider the intersection numbers∫

MP�

P(�(�1), . . . , �(�n))K�,

which are to be interpreted as analogs of numbers of rational curves in Y subject to certain conditions
specified by the polynomial P.

Now let z1, . . . , zn ∈ C∗, and form the Laurent series

∑
�∈aZ

∫
MP�

P(�(�1), . . . , �(�n))K�

n∏
i=1

z
〈�i ,�〉
i . (0.1)
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