

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The Katowice problem and autohomeomorphisms of ω_0^*

and its Applications

David Chodounský^{a,1}, Alan Dow^{b,2}, Klaas Pieter Hart^{c,*}, Harm de Vries^d

^a Institute of Mathematics, AS CR, Žitná 25, 115 67 Praha I, Czech Republic

^b Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001, United States

^c Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands
^d Levendaal 143-A, 2311 JH Leiden, The Netherlands

ARTICLE INFO

Article history: Received 14 August 2015 Accepted 2 September 2015 Available online 17 August 2016

The other authors dedicate this paper to Alan, who doesn't look a year over 59

MSC:

primary 54D40 secondary 03E05, 03E35, 06E05, 06E15, 54A35, 54D80

 $\begin{array}{l} Keywords: \\ Katowice problem \\ Homeomorphism \\ Non-trivial autohomeomorphism \\ Čech-Stone remainder \\ \omega_0^* \\ \omega_1^* \\ Isomorphism \\ Non-trivial automorphism \\ Quotient algebra \\ \mathcal{P}(\omega_0)/fin \\ \mathcal{P}(\omega_1)/fin \end{array}$

ABSTRACT

We show that the existence of a homeomorphism between ω_0^* and ω_1^* entails the existence of a non-trivial autohomeomorphism of ω_0^* . This answers Problem 441 in [8].

We also discuss the joint consistency of various consequences of ω_0^* and ω_1^* being homeomorphic.

© 2016 Published by Elsevier B.V.

* Corresponding author.

E-mail addresses: david.chodounsky@matfyz.cz (D. Chodounský), adow@uncc.edu (A. Dow), k.p.hart@tudelft.nl (K.P. Hart), vries101@gmail.com (H. de Vries).

URLs: http://www.math.uncc.edu/~adow (A. Dow), http://fa.its.tudelft.nl/~hart (K.P. Hart).

 $^{^1\,}$ Research of this author was supported by the GACR project 15-34700L and RVO: 67985840.

 $^{^2\,}$ Research of this author was supported by NSF grant No. NSF-DMS-0901168.

0. Introduction

The Katowice problem, posed by Marian Turzański, is about Čech–Stone remainders of discrete spaces. Let κ and λ be two infinite cardinals, endowed with the discrete topology. The Katowice problem asks:

If the remainders κ^* and λ^* are homeomorphic must the cardinals κ and λ be equal?

Since the weight of κ^* is equal to 2^{κ} it is immediate that the Generalized Continuum Hypothesis implies a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without any additional assumptions, *except possibly for the first two infinite cardinals*. More precisely

Theorem ([1,5]). If $\langle \kappa, \lambda \rangle \neq \langle \aleph_0, \aleph_1 \rangle$ and $\kappa < \lambda$ then the remainders κ^* and λ^* are not homeomorphic.

This leaves open the following problem.

Question. Is it consistent that ω_0^* and ω_1^* are homeomorphic?

Through the years various consequences of " ω_0^* and ω_1^* are homeomorphic" were collected, in the hope that their conjunction would imply 0 = 1 and thus yield a full positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a non-trivial autohomeomorphism of ω_0^* . Whether this is a consequence was asked by Nyikos in [7] (as Problem 441 in the whole volume [8]), right after he mentioned the relatively easy fact that ω_1^* has a non-trivial autohomeomorphism if ω_0^* and ω_1^* are homeomorphic, see the end of Section 1.

After some preliminaries in Section 1 we construct our non-trivial autohomeomorphism of ω_0^* in Section 2. In Section 3 we shall discuss the consequences alluded to above and formulate a structural question related to them; Section 4 contains some consistency results regarding that structural question.

1. Preliminaries

We deal with Čech–Stone compactifications of discrete spaces exclusively. Probably the most direct way of defining $\beta \kappa$, for a cardinal κ with the discrete topology, is as the space of ultrafilters of the Boolean algebra $\mathcal{P}(\kappa)$, as explained in [6] for example.

The remainder $\beta \kappa \setminus \kappa$ is denoted κ^* and we extend the notation A^* to denote $\operatorname{cl} A \cap \kappa^*$ for all subsets of κ . It is well known that $\{A^* : A \subseteq \kappa\}$ is exactly the family of clopen subsets of κ^* .

All relations between sets of the form A^* translate back to the original sets by adding the modifier "modulo finite sets". Thus, $A^* = \emptyset$ iff A is finite, $A^* \subseteq B^*$ iff $A \setminus B$ is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ are isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader can interpret A^* as the equivalence class of A in the quotient algebra and read the proof in Section 2 below as establishing that there is a non-trivial automorphism of the Boolean algebra $\mathcal{P}(\omega_0)/fin$.

1.1. Auto(homeo)morphisms

It is straightforward to define autohomeomorphisms of spaces of the form κ^* : take a bijection $\sigma : \kappa \to \kappa$ and let it act in the obvious way on the set of ultrafilters to get an autohomeomorphism of $\beta \kappa$ that leaves Download English Version:

https://daneshyari.com/en/article/4657762

Download Persian Version:

https://daneshyari.com/article/4657762

Daneshyari.com