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We show that the existence of a homeomorphism between ω∗
0 and ω∗

1 entails the 
existence of a non-trivial autohomeomorphism of ω∗

0 . This answers Problem 441 
in [8].
We also discuss the joint consistency of various consequences of ω∗

0 and ω∗
1 being 

homeomorphic.
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0. Introduction

The Katowice problem, posed by Marian Turzański, is about Čech–Stone remainders of discrete spaces. 
Let κ and λ be two infinite cardinals, endowed with the discrete topology. The Katowice problem asks:

If the remainders κ∗ and λ∗ are homeomorphic must the cardinals κ and λ be equal?

Since the weight of κ∗ is equal to 2κ it is immediate that the Generalized Continuum Hypothesis implies 
a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without 
any additional assumptions, except possibly for the first two infinite cardinals. More precisely

Theorem ([1,5]). If 〈κ, λ〉 �= 〈ℵ0, ℵ1〉 and κ < λ then the remainders κ∗ and λ∗ are not homeomorphic.

This leaves open the following problem.

Question. Is it consistent that ω∗
0 and ω∗

1 are homeomorphic?

Through the years various consequences of “ω∗
0 and ω∗

1 are homeomorphic” were collected, in the hope 
that their conjunction would imply 0 = 1 and thus yield a full positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a non-trivial autohomeomorphism 
of ω∗

0 . Whether this is a consequence was asked by Nyikos in [7] (as Problem 441 in the whole volume [8]), 
right after he mentioned the relatively easy fact that ω∗

1 has a non-trivial autohomeomorphism if ω∗
0 and 

ω∗
1 are homeomorphic, see the end of Section 1.
After some preliminaries in Section 1 we construct our non-trivial autohomeomorphism of ω∗

0 in Section 2. 
In Section 3 we shall discuss the consequences alluded to above and formulate a structural question related 
to them; Section 4 contains some consistency results regarding that structural question.

1. Preliminaries

We deal with Čech–Stone compactifications of discrete spaces exclusively. Probably the most direct way 
of defining βκ, for a cardinal κ with the discrete topology, is as the space of ultrafilters of the Boolean 
algebra P(κ), as explained in [6] for example.

The remainder βκ \ κ is denoted κ∗ and we extend the notation A∗ to denote clA ∩ κ∗ for all subsets 
of κ. It is well known that {A∗ : A ⊆ κ} is exactly the family of clopen subsets of κ∗.

All relations between sets of the form A∗ translate back to the original sets by adding the modifier 
“modulo finite sets”. Thus, A∗ = ∅ iff A is finite, A∗ ⊆ B∗ iff A \B is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras P(ω0)/fin and P(ω1)/fin are isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader can interpret A∗ as the 
equivalence class of A in the quotient algebra and read the proof in Section 2 below as establishing that 
there is a non-trivial automorphism of the Boolean algebra P(ω0)/fin.

1.1. Auto(homeo)morphisms

It is straightforward to define autohomeomorphisms of spaces of the form κ∗: take a bijection σ : κ → κ

and let it act in the obvious way on the set of ultrafilters to get an autohomeomorphism of βκ that leaves 
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