

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Connectedness modulo an ideal $\stackrel{\bigstar}{\approx}$

M.R. Koushesh $^{\rm a,b,\ast}$

 ^a Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
^b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

ARTICLE INFO

Article history: Received 10 June 2016 Received in revised form 1 October 2016 Accepted 22 October 2016 Available online 27 October 2016

MSC: primary 54D05, 03E15 secondary 54D35, 54C10, 54D20, 54D40, 54D60

Keywords: Stone-Čech compactification Connectedness Set ideal Hewitt realcompactification Hyper-real mapping Connectedness modulo an ideal

ABSTRACT

For a topological space X and an ideal \mathscr{H} of subsets of X we introduce the notion of connectedness modulo \mathscr{H} . This notion of connectedness naturally generalizes the notion of connectedness in its usual sense. In the case when X is completely regular, we introduce a subspace $\gamma_{\mathscr{H}} X$ of the Stone–Čech compactification βX of X, such that connectedness modulo \mathscr{H} is equivalent to connectedness of $\beta X \setminus \gamma_{\mathscr{H}} X$. In particular, we prove that when \mathscr{H} is the ideal generated by the collection of all open subspaces of X with pseudocompact closure, then X is connected modulo \mathscr{H} if and only if $cl_{\beta X}(\beta X \setminus vX)$ is connected, and when X is normal and \mathscr{H} is the ideal generated by the collection of all closed realcompact subspaces of X, then X is connected modulo \mathscr{H} if and only if $cl_{\beta X}(vX \setminus X)$ is connected. Here vX is the Hewitt realcompactification of X.

@ 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this article by *completely regular* we mean completely regular and Hausdorff (that is, Tychonoff).

An *ideal* \mathcal{H} in a set X is a non-empty collection of subsets of X such that

- if a set A is contained in an element of \mathscr{H} then A is in \mathscr{H} ,
- if G and H are in \mathscr{H} then so is their union $G \cup H$.

* Correspondence to: Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *E-mail address:* koushesh@cc.iut.ac.ir.

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2016.10.009 \\ 0166-8641/ © \ 2016 \ Elsevier \ B.V. \ All \ rights \ reserved.$

Topology and it Application

[†] This research was in part supported by a grant from Institute for Research in Fundamental Sciences (IPM) (No. 93030418).

Intuitively, an ideal is a collection of subsets that are considered to be "small". Let \mathscr{A} be a collection of subsets of a set X. The *ideal in* X generated by \mathscr{A} , denoted by $\langle \mathscr{A} \rangle$, is the intersection of all ideals in X which contain \mathscr{A} . It is easy to check that $\langle \mathscr{A} \rangle$ is the collection of all subsets of finite unions of elements from \mathscr{A} .

The purpose of this article is to present a natural generalization of the notion of connectedness in topological spaces. Recall that a space X is said to be *connected* if there is no continuous 2-valued mapping on X, that is, there is no continuous mapping $f: X \to [0, 1]$ such that

- $f^{-1}(0)$ and $f^{-1}(1)$ are neither empty,
- $X \setminus (f^{-1}(0) \cup f^{-1}(1))$ is empty.

Now, to generalize, we replace "emptyness" in the above definition by "smallness", that is, "being an element of an ideal in X". More precisely, for a space X and an ideal \mathscr{H} in X, we say that X is connected modulo \mathscr{H} if there is no continuous mapping $f: X \to [0, 1]$ such that

- $f^{-1}(0)$ and $f^{-1}(1)$ are neither in \mathscr{H} ,
- $X \setminus (f^{-1}(0) \cup f^{-1}(1))$ is in \mathscr{H} .

From this simple definition much follows. Indeed, most standard facts about connectedness have counterparts in this context. Note that for the trivial ideal $\{\emptyset\}$, connectedness modulo an ideal coincides with connectedness in its usual sense.

This article is organized as follows. There are two main sections. In Section 2 we study connectedness modulo an ideal \mathscr{H} with no particular restriction on \mathscr{H} ; in Section 3 we deal with particular examples of \mathscr{H} . In Section 2 we generalize the standard known facts about connectedness to our new setting. This include theorems on preservation of connectedness under continuous mappings, formation of unions and taking closures. Further, for a completely regular space X and an ideal \mathscr{H} of subsets of X, we introduce a subspace $\lambda_{\mathscr{H}} X$ of the Stone–Čech compactification βX of X, such that connectedness modulo the ideal \mathscr{H} of X is equivalent to connectedness of $\beta X \setminus \lambda_{\mathscr{H}} X$. In Section 3 we consider particular examples of the ideal \mathscr{H} . In particular, we show that if X is completely regular and \mathscr{H} is the ideal generated by the collection of all open subspaces of X whose closures are pseudocompact, then X is connected modulo \mathscr{H} if and only if $cl_{\beta X}(\beta X \setminus vX)$ is connected, and if X is normal and \mathscr{H} is the ideal generated by the collection of all closed realcompact subspaces of X, then X is connected modulo \mathscr{H} if and only if $cl_{\beta X}(vX \setminus X)$ is connected. Here vX denotes the Hewitt realcompactification of X.

We now review some notation and certain known facts. For undefined terms and notation we refer the reader to the standard texts [4,5] and [18].

Let X be a space. A zero-set in X (cozero-set in X, respectively) is a set of the form $f^{-1}(0)$ $(X \setminus f^{-1}(0),$ respectively) where $f: X \to [0, 1]$ is a continuous mapping. For a continuous mapping $f: X \to [0, 1]$, the zero-set of f (cozero-set of f, respectively) is $f^{-1}(0)$ $(X \setminus f^{-1}(0),$ respectively). The set of all zero-sets of X (cozero-sets of X, respectively) is denoted by Z(X) (Coz(X), respectively).

The Stone–Čech compactification. Let X be a completely regular space. By a compactification of X we mean a compact Hausdorff space which contains X as a dense subspace. The Stone–Čech compactification of X, denoted by βX , is the compactification of X which is characterized among all compactifications of X by the fact that every continuous mapping $f : X \to K$, where K is a compact Hausdorff space (or [0, 1]), is extendable to a (unique) continuous mapping over βX ; we denote this continuous extension of f by f_{β} . The Stone–Čech compactification of a completely regular space always exists.

The Hewitt realcompactification. A space is called *realcompact* if it is homeomorphic to a closed subspace of some product \mathbb{R}^{α} . Let X be a completely regular space. A *realcompactification of* X is a realcompact

Download English Version:

https://daneshyari.com/en/article/4657784

Download Persian Version:

https://daneshyari.com/article/4657784

Daneshyari.com