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for each natural number n not divisible by 3 the knot which is represented by the
closure of the braid 8™ is algebraically slice if and only if n is odd. As a consequence,
we deduce some properties of Lucas numbers.
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1. Introduction

Let Conc(S?) denote the abelian group of concordance classes of knots in S®. Two knots Ky, K1 € 8% =
0B* are concordant if there exists a smooth embedding c: S! x [0,1] — B* such that ¢(S* x {0}) = K
and ¢(S! x {1}) = K. The knot is called slice if it is concordant to the unknot. The addition in Conc(S?)
is defined by the connected sum of knots. The inverse of an element [K] € Conc(S?) is represented by the
knot —K*, where — K™ denotes the mirror image of the knot K with the reversed orientation.

Let AConc(S?) denote the algebraic concordance group of knots in S®. The elements of this group are
equivalence classes of Seifert forms [Vg] associated with an arbitrary chosen Seifert surface F' of a given
knot K. The addition in AConc(S?) is induced by direct sum. A knot K is called algebraically slice if it has
a Seifert matrix which is metabolic. It is a well known fact that every slice knot is algebraically slice. For
more information about these groups see [10].

Let B3 denote the Artin braid group on 3 strings and let o1, o2 be the standard Artin generators of Bg,
i.e. 0; is represented by half-twist of 7 4+ 1-th string over i-th string and B3 has the following presentation
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B3 = (01,02| 010201 = 020102) .

In this paper we discuss properties of a family of knots in which every knot is represented by a closure of
the braid g", where § = 01051 € Bs and n # 0mod 3. This family of braids is interesting in the following
sense: the braid S has a minimal length among all non-trivial braids in B3 whose stable commutator length
is zero. Hence by a theorem of Kedra and the author the four ball genus of every knot in this family is
bounded by 4, see [2, Section 4.E.].

Theorem 1. Let n be any natural number not divisible by 3. Then the closure of 3" is of order 2 in AConc(S?)
if n is even and the closure of B" is algebraically slice if n is odd.

We would like to add the following remarks:

e The above theorem is not entirely new. The fact that the closure of 5™ is a non-slice knot when n is
even was proved by Lisca [9] using a celebrated theorem of Donaldson (also [14, Section 6.2] implies the
same result). However, our proof of this fact is different. It uses Gauss diagram technique and is simple.

e The main ingredient of our proof is the computation of the Arf invariant. More precisely, we compute
Arf(ﬂA”) for each n not divisible by 3. Note that if n is divisible by 3 then the closure of 5™ is a
three component totally proper link, and each of the components is a trivial knot. It follows from the
result of Hoste [6] that its Arf invariant equals to the coefficient of z* of its Conway polynomial. In [1,
Corollary 3.5] the author proved that this coefficient can be obtained as a certain count of ascending
arrow diagrams with 4 arrows in a Gauss diagram of this link. However, in this case the computation is
more involved since there are many ascending arrow diagrams with 4 arrows. It is left to an interested
reader.

o It is still unknown whether the induced family of smooth or even algebraic concordance classes is infinite,
and these seem to be hard questions.

Let {L,}5°; be a sequence of Lucas numbers, i.e. it is a Fibonacci sequence with L; = 1 and Ly = 3.
Surprisingly, Theorem 1 has a corollary which is the following number theoretic statement.

Corollary 1. Let n € N. Then

(1) Lion+4 is equivalent to 5mod 8 or 7mod 8;
(2) Li2p+2 = 3mod8;
(3) Li2n+2 — 2 is a square.

Remark. Corollary 1 is not new. All parts of it can be proved directly. However, we think that it is interesting
that a number theoretic result can be deduced from a purely topological statement. We would like to point
out that the proof (identical to ours) of the fact that Lig,+o — 2 is a square for every n was given first in
[14, Section 6.2].

2. Proofs

Let us recall the notion of a Gauss diagram.

Definition 2.1. Given a classical link diagram D, consider a collection of oriented circles parameterizing it.
Unite two preimages of every crossing of D in a pair and connect them by an arrow, pointing from the
overpassing preimage to the underpassing one. To each arrow we assign a sign (writhe) of the corresponding
crossing. The result is called the Gauss diagram G corresponding to D.
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