Concordance of certain 3-braids and Gauss diagrams

CrossMark

Michael Brandenbursky
Department of Mathematics, Ben Gurion University, Israel

A R T I C L E I N F O

Article history:

Received 26 July 2016
Received in revised form 13 October 2016
Accepted 13 October 2016
Available online 18 October 2016

$M S C$:

57

Keywords:

Braids
Knots
Concordance
Gauss diagrams

Abstract

Let $\beta:=\sigma_{1} \sigma_{2}^{-1}$ be a braid in \mathbf{B}_{3}, where \mathbf{B}_{3} is the braid group on 3 strings and σ_{1}, σ_{2} are the standard Artin generators. We use Gauss diagram formulas to show that for each natural number n not divisible by 3 the knot which is represented by the closure of the braid β^{n} is algebraically slice if and only if n is odd. As a consequence, we deduce some properties of Lucas numbers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $\operatorname{Conc}\left(\mathbf{S}^{3}\right)$ denote the abelian group of concordance classes of knots in \mathbf{S}^{3}. Two knots $K_{0}, K_{1} \in \mathbf{S}^{3}=$ $\partial \mathbf{B}^{4}$ are concordant if there exists a smooth embedding $c: \mathbf{S}^{1} \times[0,1] \rightarrow \mathbf{B}^{4}$ such that $c\left(\mathbf{S}^{1} \times\{0\}\right)=K_{0}$ and $c\left(\mathbf{S}^{1} \times\{1\}\right)=K_{1}$. The knot is called slice if it is concordant to the unknot. The addition in $\operatorname{Conc}\left(\mathbf{S}^{3}\right)$ is defined by the connected sum of knots. The inverse of an element $[K] \in \operatorname{Conc}\left(\mathbf{S}^{3}\right)$ is represented by the knot $-K^{*}$, where $-K^{*}$ denotes the mirror image of the knot K with the reversed orientation.

Let $\operatorname{AConc}\left(\mathbf{S}^{3}\right)$ denote the algebraic concordance group of knots in \mathbf{S}^{3}. The elements of this group are equivalence classes of Seifert forms $\left[V_{F}\right]$ associated with an arbitrary chosen Seifert surface F of a given knot K. The addition in $\operatorname{AConc}\left(\mathbf{S}^{3}\right)$ is induced by direct sum. A knot K is called algebraically slice if it has a Seifert matrix which is metabolic. It is a well known fact that every slice knot is algebraically slice. For more information about these groups see [10].

Let \mathbf{B}_{3} denote the Artin braid group on 3 strings and let σ_{1}, σ_{2} be the standard Artin generators of \mathbf{B}_{3}, i.e. σ_{i} is represented by half-twist of $i+1$-th string over i-th string and \mathbf{B}_{3} has the following presentation

[^0]$$
\mathbf{B}_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

In this paper we discuss properties of a family of knots in which every knot is represented by a closure of the braid β^{n}, where $\beta=\sigma_{1} \sigma_{2}^{-1} \in \mathbf{B}_{3}$ and $n \neq 0 \bmod 3$. This family of braids is interesting in the following sense: the braid β has a minimal length among all non-trivial braids in \mathbf{B}_{3} whose stable commutator length is zero. Hence by a theorem of Kedra and the author the four ball genus of every knot in this family is bounded by 4, see [2, Section 4.E.].

Theorem 1. Let n be any natural number not divisible by 3. Then the closure of β^{n} is of order 2 in $\mathbf{A C o n c}\left(\mathbf{S}^{3}\right)$ if n is even and the closure of β^{n} is algebraically slice if n is odd.

We would like to add the following remarks:

- The above theorem is not entirely new. The fact that the closure of β^{n} is a non-slice knot when n is even was proved by Lisca [9] using a celebrated theorem of Donaldson (also [14, Section 6.2] implies the same result). However, our proof of this fact is different. It uses Gauss diagram technique and is simple.
- The main ingredient of our proof is the computation of the Arf invariant. More precisely, we compute $\operatorname{Arf}\left(\widehat{\beta^{n}}\right)$ for each n not divisible by 3 . Note that if n is divisible by 3 then the closure of β^{n} is a three component totally proper link, and each of the components is a trivial knot. It follows from the result of Hoste [6] that its Arf invariant equals to the coefficient of z^{4} of its Conway polynomial. In [1, Corollary 3.5] the author proved that this coefficient can be obtained as a certain count of ascending arrow diagrams with 4 arrows in a Gauss diagram of this link. However, in this case the computation is more involved since there are many ascending arrow diagrams with 4 arrows. It is left to an interested reader.
- It is still unknown whether the induced family of smooth or even algebraic concordance classes is infinite, and these seem to be hard questions.

Let $\left\{L_{n}\right\}_{n=1}^{\infty}$ be a sequence of Lucas numbers, i.e. it is a Fibonacci sequence with $L_{1}=1$ and $L_{2}=3$. Surprisingly, Theorem 1 has a corollary which is the following number theoretic statement.

Corollary 1. Let $n \in \mathbf{N}$. Then
(1) $L_{12 n \pm 4}$ is equivalent to $5 \bmod 8$ or $7 \bmod 8$;
(2) $L_{12 n \pm 2} \equiv 3 \bmod 8$;
(3) $L_{12 n \pm 2}-2$ is a square.

Remark. Corollary 1 is not new. All parts of it can be proved directly. However, we think that it is interesting that a number theoretic result can be deduced from a purely topological statement. We would like to point out that the proof (identical to ours) of the fact that $L_{12 n \pm 2}-2$ is a square for every n was given first in [14, Section 6.2].

2. Proofs

Let us recall the notion of a Gauss diagram.
Definition 2.1. Given a classical link diagram D, consider a collection of oriented circles parameterizing it. Unite two preimages of every crossing of D in a pair and connect them by an arrow, pointing from the overpassing preimage to the underpassing one. To each arrow we assign a sign (writhe) of the corresponding crossing. The result is called the Gauss diagram G corresponding to D.

https://daneshyari.com/en/article/4657785

Download Persian Version:
https://daneshyari.com/article/4657785

Daneshyari.com

[^0]: E-mail address: brandens@math.bgu.ac.il.
 http://dx.doi.org/10.1016/j.topol.2016.10.006
 0166-8641/© 2016 Elsevier B.V. All rights reserved.

