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Let β := σ1σ
−1
2 be a braid in B3, where B3 is the braid group on 3 strings and σ1, 

σ2 are the standard Artin generators. We use Gauss diagram formulas to show that 
for each natural number n not divisible by 3 the knot which is represented by the 
closure of the braid βn is algebraically slice if and only if n is odd. As a consequence, 
we deduce some properties of Lucas numbers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let Conc(S3) denote the abelian group of concordance classes of knots in S3. Two knots K0, K1 ∈ S3 =
∂B4 are concordant if there exists a smooth embedding c : S1 × [0, 1] → B4 such that c(S1 × {0}) = K0

and c(S1 × {1}) = K1. The knot is called slice if it is concordant to the unknot. The addition in Conc(S3)
is defined by the connected sum of knots. The inverse of an element [K] ∈ Conc(S3) is represented by the 
knot −K∗, where −K∗ denotes the mirror image of the knot K with the reversed orientation.

Let AConc(S3) denote the algebraic concordance group of knots in S3. The elements of this group are 
equivalence classes of Seifert forms [VF ] associated with an arbitrary chosen Seifert surface F of a given 
knot K. The addition in AConc(S3) is induced by direct sum. A knot K is called algebraically slice if it has 
a Seifert matrix which is metabolic. It is a well known fact that every slice knot is algebraically slice. For 
more information about these groups see [10].

Let B3 denote the Artin braid group on 3 strings and let σ1, σ2 be the standard Artin generators of B3, 
i.e. σi is represented by half-twist of i + 1-th string over i-th string and B3 has the following presentation
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B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉 .

In this paper we discuss properties of a family of knots in which every knot is represented by a closure of 
the braid βn, where β = σ1σ

−1
2 ∈ B3 and n �= 0 mod 3. This family of braids is interesting in the following 

sense: the braid β has a minimal length among all non-trivial braids in B3 whose stable commutator length 
is zero. Hence by a theorem of Kedra and the author the four ball genus of every knot in this family is 
bounded by 4, see [2, Section 4.E.].

Theorem 1. Let n be any natural number not divisible by 3. Then the closure of βn is of order 2 in AConc(S3)
if n is even and the closure of βn is algebraically slice if n is odd.

We would like to add the following remarks:

• The above theorem is not entirely new. The fact that the closure of βn is a non-slice knot when n is 
even was proved by Lisca [9] using a celebrated theorem of Donaldson (also [14, Section 6.2] implies the 
same result). However, our proof of this fact is different. It uses Gauss diagram technique and is simple.

• The main ingredient of our proof is the computation of the Arf invariant. More precisely, we compute 
Arf(β̂n) for each n not divisible by 3. Note that if n is divisible by 3 then the closure of βn is a 
three component totally proper link, and each of the components is a trivial knot. It follows from the 
result of Hoste [6] that its Arf invariant equals to the coefficient of z4 of its Conway polynomial. In [1, 
Corollary 3.5] the author proved that this coefficient can be obtained as a certain count of ascending 
arrow diagrams with 4 arrows in a Gauss diagram of this link. However, in this case the computation is 
more involved since there are many ascending arrow diagrams with 4 arrows. It is left to an interested 
reader.

• It is still unknown whether the induced family of smooth or even algebraic concordance classes is infinite, 
and these seem to be hard questions.

Let {Ln}∞n=1 be a sequence of Lucas numbers, i.e. it is a Fibonacci sequence with L1 = 1 and L2 = 3. 
Surprisingly, Theorem 1 has a corollary which is the following number theoretic statement.

Corollary 1. Let n ∈ N. Then

(1) L12n±4 is equivalent to 5 mod8 or 7 mod 8;
(2) L12n±2 ≡ 3 mod8;
(3) L12n±2 − 2 is a square.

Remark. Corollary 1 is not new. All parts of it can be proved directly. However, we think that it is interesting 
that a number theoretic result can be deduced from a purely topological statement. We would like to point 
out that the proof (identical to ours) of the fact that L12n±2 − 2 is a square for every n was given first in 
[14, Section 6.2].

2. Proofs

Let us recall the notion of a Gauss diagram.

Definition 2.1. Given a classical link diagram D, consider a collection of oriented circles parameterizing it. 
Unite two preimages of every crossing of D in a pair and connect them by an arrow, pointing from the 
overpassing preimage to the underpassing one. To each arrow we assign a sign (writhe) of the corresponding 
crossing. The result is called the Gauss diagram G corresponding to D.
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