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1. Introduction

A link (knot) L is called 2-adjacent to a link (knot) W, if L admits a projection D containing two
crossings ¢, ¢o such that switching any 0 < s < 2 of them yields a projection of W [1,10,11]. Tts properties
can be found in [10,11]. The 2-adjacency of classical pretzel knots has been proven that only the trefoil knot
and the figure-eight knot are 2-adjacent to the trivial knot [8]. In this paper, we will study the 2-adjacent
relation between a two-component pretzel link and an unlink, whether the trivial knot is 2-adjacent to a
pretzel knot. We conclude the following theorem.

Theorem 1.1. Any nontrivial pretzel link with two components is not 2-adjacent to the trivial link and vice
Versa.

Theorem 1.2. The trivial knot is not 2-adjacent to any nontrivial pretzel knot.
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In the sequel, we assume that the reader is familiar with the definitions and the basic properties of
the Conway polynomial V(x), the Jones polynomial V(x;t), and the Homfly polynomial P(x;l,m) of links
(knots). They can be found in [3-6].

Convention: We always assume that L = Ly |J L» is 2-adjacent to an oriented link W = Wy | Wy (here
Ly and Wy are empty for the case of knots, i.e. L = L; and W = W;) and the two related crossings are
denoted by c¢; and co respectively. Since L is 2-adjacent to W, so there is a 2-adjacent diagram of L denoted
by D(c1,c2) and D(ocy,o0cs) is a diagram obtained from D = D(c1,c2) by opening ¢; and co respectively.
The sign of ¢; (resp. ¢2) is denoted by « (resp. 8) and ¢; € L;. Hence, Lq is Ws. a,,(G) denotes the coefficient
of z" in the Conway polynomial of G. Moreover, Ik(G) denotes the total linking number of a link G (see
p. 133 in [6]).

2. Preliminary

Definition 2.1. ([5]) A pretzel link is denoted by P(—nb;q1,--- ,qn) with >0, |¢;| > 1, (i=1,--- ,n) and
n = £1. Here —nb denotes b strands which each strand has only one crossing with sign 1. The condition for
P(—nb;q1,-- ,qn) to be a knot is that either n > 0 and all of the ¢;’s and n + b are odd or just one of the
q;’s is even. We call it a pretzel knot of odd type in the former case, and a pretzel knot of even type in the
latter case. Fig. 1 gives an example.
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Fig. 1. P(1,—3, —4,4) = P(—1; -3, —4, 4).

Tt is clear that a link (knot) is 2-adjacent to an unlink (unknot) if and only if its mirror image is and if
the unlinking (unknotting) number of a pretzel link (knot) is one, then it has only three strands [7] and two
of them have an even number of crossings for the pretzel link.

Proposition 2.2. ([8-10]) If the notations and the conditions are as the convention, then k(L) = lk(W') and
V(L) = aBz*V(D(ocy,0c2)) + V(W). (2.1)

(1) If as(L) # as(W), then D(oc1,0c2) is a two-component link.

(2) If ag(L) = az(W), then either Ik(L) = 0 and D(oc1, 0oce) is a link with two components or D(ocy,o0cs)
s a link with four components.

(3) D(ocy,0c2) is a link with four components if and only if as(L1) = a2(W1); D(ocy1,0c2) is a link with
two components if and only if as(L1) = af + ax(W1). Moreover, for the second case,

V(L) = afz>V(D(oct, 0c3)) + V(W1), (2.2)

where ﬁ(ocl, oco) is obtained by opening c1, co from Ly.
(4) If L is the trivial link and is 2-adjacent to W, then D(ocy,o0cq) has four components. Furthermore, if
as(W1) =0, then lk(D(ocy,0c2)) = 0.
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