Two Cardinal inequalities about bidiscrete systems

Clayton Suguio Hida ${ }^{1}$
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, Brazil

A R T I C L E I N F O

Article history:

Received 12 April 2016
Received in revised form 6
September 2016
Accepted 8 September 2016
Available online 12 September 2016

Keywords:

Bidiscrete systems
Compact spaces
Boolean algebras
Biorthogonal systems
Hereditarily Lindelof degree

Abstract

We consider the cardinal invariant $b d$ defined by M. Džamonja and I. Juhász concerning bidiscrete systems. Using the relation between bidiscrete systems and irredundance for a compact Hausdorff space K, we prove that $w(K) \leq b d(K) \cdot h L(K)^{+}$, generalizing a result of S . Todorcevic concerning the irredundance in Boolean algebras and we prove that for every maximal irredundant family $\mathcal{F} \subset C(K)$, there is a π-base \mathcal{B} for K with $|\mathcal{F}|=|\mathcal{B}|$, a result analogous to the McKenzie Theorem for Boolean algebras in the context of compact spaces. In particular, it is a consequence of the latter result that $\pi(K) \leq b d(K)$ for every compact Hausdorff space K. From the relation between bidiscrete systems and biorthogonal systems, we obtain some results about biorthogonal systems in Banach spaces of the form $C(K)$.

© 2016 Elsevier B.V. All rights reserved.

Introduction

In this work, we consider the notion of bidiscrete systems defined by M. Džamonja and I. Juhász in [2]:
Definition 1 (M. Džamonja, I. Juhász [2]). Let K be a compact Hausdorff space. A sequence $S=\left\{\left(x_{\alpha}^{0}, x_{\alpha}^{1}\right)\right.$: $\alpha<\kappa\}$ of pairs of points in K (i.e., a subfamily of K^{2}) is called a bidiscrete system in K if there exists a family $\left\{f_{\alpha}: \alpha<\kappa\right\}$ of real valued continuous functions on K satisfying for every $\alpha, \beta<\kappa$:

- $f_{\alpha}\left(x_{\alpha}^{l}\right)=l$ for $l \in\{0,1\}$,
- if $\alpha \neq \beta$ then $f_{\alpha}\left(x_{\beta}^{0}\right)=f_{\alpha}\left(x_{\beta}^{1}\right)$.

The cardinal invariant $b d(K)$ is defined to be

[^0]$$
b d(K):=\sup \{|S|: S \text { is a bidiscrete system in } K\} .
$$

The purpose of this work is to obtain some new cardinal inequalities for a compact Hausdorff space K, relating the cardinal invariant $b d(K)$ and some other topological cardinal invariants of K. Firstly, we will translate the definition of $b d(K)$ in terms of Banach spaces and in terms of Banach algebras. Given a compact Hausdorff space K, we consider the Banach space $C(K)$ of all real valued continuous functions on K with the supremum norm. In [2], the authors considered the notion of a nice biorthogonal system for Banach spaces of the form $C(K)$. We say that a sequence $\left(f_{\alpha}, \mu_{\alpha}\right)_{\alpha<\kappa}$ in $C(K) \times M(K)$ (where $M(K)$ is the space of Radon measures on K) is a biorthogonal system if for every $\alpha, \beta<\kappa$

$$
\mu_{\alpha}\left(f_{\beta}\right)= \begin{cases}1, & \text { if } \alpha=\beta \\ 0, & \text { if } \alpha \neq \beta\end{cases}
$$

Moreover, if for each $\alpha<\kappa$, there are distinct points $x_{\alpha}, y_{\alpha} \in K$ such that $\mu_{\alpha}=\delta_{x_{\alpha}}-\delta_{y_{\alpha}}$, where δ_{x} denotes a Dirac measure centred in x, we say that the sequence $\left(f_{\alpha}, \mu_{\alpha}\right)_{\alpha<\kappa}$ is a nice biorthogonal system.

We observe that, if $\left\{\left(x_{\alpha}, y_{\alpha}\right): \alpha<\kappa\right\}$ is a bidiscrete system in K, then by definition, there exists a family of functions $\left\{f_{\alpha}: \alpha<\kappa\right\}$ such that $\left(f_{\alpha}, \delta_{x_{\alpha}}-\delta_{y_{\alpha}}\right)_{\alpha<\kappa}$ is a nice biorthogonal system. In the same way, if $\left(f_{\alpha}, \delta_{x_{\alpha}}-\delta_{y_{\alpha}}\right)_{\alpha<\kappa}$ is a nice biorthogonal system, then it is easy to see that $\left\{\left(x_{\alpha}, y_{\alpha}\right): \alpha<\kappa\right\}$ is a bidiscrete system. From this observation we conclude that

$$
b d(K)=\sup \{\kappa: \text { there is a nice biorthogonal system of size } \kappa \text { in } C(K)\} .
$$

In other words, the cardinal $b d(K)$ is equal to the cardinal $n b i o r t_{2}(K)$ as defined in [5].
For a compact Hausdorff space K, the corresponding Banach space $C(K)$ is a Banach algebra, where the multiplication is the pointwise multiplication of functions. A set $\mathcal{F} \subset C(K)$ is said to be irredundant if and only if for every $f \in \mathcal{F}$, there exists a Banach subalgebra $\mathcal{B} \subset C(K)$ such that $\mathcal{F} \backslash\{f\} \subset \mathcal{B}$ and $f \notin \mathcal{B}$. This is equivalent to say that, for every $f \in \mathcal{F}, f$ does not belong to the Banach subalgebra generated by $\mathcal{F} \backslash\{f\}$, where the Banach subalgebra generated by $\mathcal{F} \backslash\{f\}$ is the smallest Banach subalgebra of $C(K)$ containing $\mathcal{F} \backslash\{f\}$. From Theorem 5.4 of [5], for a compact Hausdorff space $K, C(K)$ contains an irredundant set of size κ if and only if it contains a nice biorthogonal system of size κ. This implies that

$$
b d(K)=\sup \{|\mathcal{F}|: \mathcal{F} \subset C(K) \text { is an irredundant set of } C(K)\} .
$$

We conclude that for every compact Hausdorff space K, there is a bidiscrete system in K of size κ if and only if there is an irredundant set of size κ in $C(K)$. This allows us to work in the frame of irredundant sets instead of bidiscrete systems. The definition of $b d(K)$ in terms of irredundant sets is similar to the definition of the well know cardinal invariant $\operatorname{irr}(\mathcal{A})$ for a Boolean algebra \mathcal{A}. The cardinal invariant $\operatorname{irr}(\mathcal{A})$ is defined in analogy to $b d$, where a subset $B \subset \mathcal{A}$ is irredundant if and only if for every $b \in B, b$ does not belong to the Boolean subalgebra generated by $B \backslash\{b\}$. See [8] for definitions and some properties of $\operatorname{irr}(\mathcal{A})$ for a Boolean algebra \mathcal{A}. In particular, if \mathcal{A} is a Boolean algebra and if $K_{\mathcal{A}}$ denotes its Stone space, we have that $\operatorname{irr}(\mathcal{A}) \leq b d\left(K_{\mathcal{A}}\right)$. In fact, suppose $B \subset \mathcal{A}$ is an irredundant set. Then $\mathcal{F}:=\left\{\chi_{[b]}: b \in B\right\}$ is an irredundant set in $C\left(K_{\mathcal{A}}\right)$, where $[b]$ denotes the clopen set of $K_{\mathcal{A}}$ determined by $b \in B$. However, we do not know if we have the equality $\operatorname{irr}(\mathcal{A})=b d\left(K_{\mathcal{A}}\right)$. Theorem 5.4 of [5] tells us that for every Boolean algebra $\mathcal{A}, b d\left(K_{\mathcal{A}}\right) \leq s\left(K_{\mathcal{A}}^{2}\right)$, where $s\left(K_{\mathcal{A}}\right)$ is the spread of $K_{\mathcal{A}}$. This implies that if \mathcal{A} is a counterexample for the equality $\operatorname{irr}(\mathcal{A})=b d\left(K_{\mathcal{A}}\right)$, then $\operatorname{irr}(\mathcal{A})<s\left(K_{\mathcal{A}}^{2}\right)$. For example, the Boolean algebra \mathcal{B} constructed in [10] satisfies $\operatorname{irr}(\mathcal{B})<s\left(K_{\mathcal{B}}^{2}\right)$.

In section 1, we study the relation between the cardinal invariant $b d(K)$ and $w(K)$, the topological weight of K. We prove the following result

https://daneshyari.com/en/article/4657825

Download Persian Version:
https://daneshyari.com/article/4657825

Daneshyari.com

[^0]: E-mail address: suguio@ime.usp.br.
 ${ }^{1}$ The author was supported by FAPESP grants (2011/01285-3 and 2013/01609-9) and would like to thank Prof. Piotr Koszmider for his guidance and assistance during the preparation of this paper
 http://dx.doi.org/10.1016/j.topol.2016.09.006
 0166-8641/© 2016 Elsevier B.V. All rights reserved.

