Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Verbal covering properties of topological spaces $\stackrel{\Rightarrow}{\approx}$

Taras Banakh^{a,b,*}, Alex Ravsky^c

^a Ivan Franko National University of Lviv, Ukraine

^b Jan Kochanowski University in Kielce, Poland

^c Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of

Sciences, Lviv, Ukraine

A R T I C L E I N F O

Article history: Received 31 December 2014 Accepted 7 May 2015 Available online 30 December 2015

MSC: 54A25 54D20

Keywords: Cardinal topological invariants Covering property Neighborhood assignment Quasi-uniformity Pre-uniformity

ABSTRACT

For any topological space X we study the relation between the universal uniformity \mathcal{U}_X , the universal quasi-uniformity $q\mathcal{U}_X$ and the universal pre-uniformity $p\mathcal{U}_X$ on X. For a pre-uniformity \mathcal{U} on a set X and a word v in the two-letter alphabet $\{+, -\}$ we define the verbal power \mathcal{U}^v of \mathcal{U} and study its boundedness numbers $\ell(\mathcal{U}^v)$, $\bar{\ell}(\mathcal{U}^v)$. $L(\mathcal{U}^v)$ and $\overline{L}(\mathcal{U}^v)$. The boundedness numbers of (the Boolean operations over) the verbal powers of the canonical pre-uniformities $p\mathcal{U}_X$, $q\mathcal{U}_X$ and \mathcal{U}_X yield new cardinal characteristics $\ell^{v}(X)$, $\bar{\ell}^{v}(X)$, $L^{v}(X)$, $\bar{L}^{v}(X)$, $q\ell^{v}(X)$, $q\bar{\ell}^{v}(X)$, $qL^{v}(X)$, $q\bar{L}^{v}(X)$, $u\ell(X)$ of a topological space X, which generalize all known cardinal topological invariants related to (star-)covering properties. We study the relation of the new cardinal invariants ℓ^v , $\bar{\ell}^v$ to classical cardinal topological invariants such as Lindelöf number ℓ , density d, and spread s. The simplest new verbal cardinal invariant is the foredensity $\ell^{-}(X)$ defined for a topological space X as the smallest cardinal κ such that for any neighborhood assignment $(O_x)_{x \in X}$ there is a subset $A \subset X$ of cardinality $|A| \leq \kappa$ that meets each neighborhood $O_x, x \in X$. It is clear that $\ell^{-}(X) \leq d(X) \leq \ell^{-}(X) \cdot \chi(X)$. We shall prove that $\ell^{-}(X) = d(X)$ if $|X| < \aleph_{\omega}$. On the other hand, for every singular cardinal κ (with $\kappa \leq 2^{2^{cf(\kappa)}}$) we construct a (totally disconnected) T_1 -space X such that $\ell^-(X) = cf(\kappa) < \kappa = |X| = d(X)$.

@ 2015 Published by Elsevier B.V.

0. Introduction

In this paper we suggest a uniform treatment of many (star-)covering properties considered in topological literature. Namely, for every word v in the two-letter alphabet $\{+, -\}$ we define v-compact, weakly v-compact, v-Lindelöf, and weakly v-Lindelöf spaces, and the corresponding cardinal topological invariants L^v , \bar{L}^v , ℓ^v , $\bar{\ell}^v$, which generalize many known cardinal invariants that have covering nature. In particular, ℓ^+ and $\bar{\ell}^+$ coincide with the Lindelöf and weakly Lindelöf numbers, ℓ^{-+} coincide with the weak extent and ℓ^{+-+} coincides with the star-Lindelöf number. The cardinal characteristics L^v , \bar{L}^v , ℓ^v , ℓ^v

* Corresponding author.

 $^{^{\}circ}$ The first author has been partially financed by NCN grant DEC-2012/07/D/ST1/02087.

E-mail addresses: t.o.banakh@gmail.com (T. Banakh), oravsky@mail.ru (A. Ravsky).

Section 4. Sections 1, 2 are of preliminary character and collect known information on covering and starcovering properties in topological spaces and pre-uniform spaces. In Section 3 we introduce three canonical pre-uniformities $p\mathcal{U}_X$, $q\mathcal{U}_X$, \mathcal{U}_X on a topological space X and study the inclusion relation between these pre-uniformities and their verbal powers. Section 5 is devoted to studying the interplay between the density d and the cardinal invariant ℓ^- called the foredensity.

1. Preliminaries

In this section we recall some information on covering properties of topological spaces.

Let ω denote the set of all finite ordinals and let $\mathbb{N} = \omega \setminus \{0\}$ be the set of natural numbers.

For a subset A of a topological space X by \overline{A} we denote the closure of the set A in X.

We recall that a family $(A_i)_{i \in I}$ of subsets of a topological space X is *discrete* if each point $z \in X$ has a neighborhood that meets at most one set A_i , $i \in I$.

1.1. Classical cardinal invariants in topological spaces

We recall that for a topological space X its character $\chi(X)$ is defined as the smallest cardinal κ such that each point $x \in X$ has a neighborhood base \mathcal{B}_x of cardinality $|\mathcal{B}_x| \leq \kappa$.

Next, we recall the definitions of the basic cardinal invariants composing the famous Hodel's diagram [11, p. 15] (see also [9, p. 225]). For a topological space X let

- $w(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base of the topology of } X\}$ be the *weight* of X;
- $nw(X) = \min\{|\mathcal{N}| : \mathcal{N} \text{ is a network of the topology of } X\}$ be the *network weight* of X;
- $d(X) = \min\{|A| : A \subset X, \overline{A} = X\}$ be the *density* of X;
- $hd(X) = \sup\{d(Y) : Y \subset X\}$ be the hereditary density of X;
- l(X), the Lindelöf number of X, be the smallest cardinal κ such that each open cover \mathcal{U} of X has a subcover $\mathcal{V} \subset \mathcal{U}$ of cardinality $|\mathcal{V}| \leq \kappa$;
- $hl(X) = \sup\{l(Y) : Y \subset X\}$ be the hereditary Lindelöf number of X;
- $s(X) = \sup\{|D| : D \text{ is a discrete subspace of } X\}$ be the *spread* of X;
- $e(X) = \sup\{|D| : D \text{ is a closed discrete subspace of } X\}$ be the *extent* of X;
- $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open sets in } X\}$ be the *cellularity* of X.

These nine cardinal characteristics compose the Hodel diagram [11] in which an arrow $f \to g$ indicates that $f(X) \leq g(X)$ for any topological space X. The same convention concerns all other diagrams drawn in this paper.

Download English Version:

https://daneshyari.com/en/article/4657848

Download Persian Version:

https://daneshyari.com/article/4657848

Daneshyari.com