Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

ABSTRACT

these selection properties.

Selective bitopological versions of separability

Selma Özçağ¹

Department of Mathematics, Hacettepe University, Ankara, Turkey

ARTICLE INFO

Article history: Received 26 October 2014 Accepted 15 April 2015 Available online 23 December 2015

MSC: primary 54E55 secondary 54D65, 91A44

Keywords: Bitopological spaces Selection principles Selective separability Topological games

1. Introduction

We first recall the two classical selection principles in topological spaces. Let \mathcal{A} and \mathcal{B} be sets whose elements are families of subsets of an infinite set X. Then:

 $\mathsf{S}_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $\langle A_n : n \in \mathbb{N} \rangle$ of elements of \mathcal{A} there is a sequence $\langle B_n : n \in \mathbb{N} \rangle$ of finite sets such that for each $n, B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $\langle A_n : n \in \mathbb{N} \rangle$ of elements of \mathcal{A} there is a sequence $\langle b_n : n \in \mathbb{N} \rangle$ such that for each n, $b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

We study selective versions of separability in bitopological spaces by using the

notions of θ -closure and θ -density. Additionally, we consider games associated to

 $\ensuremath{\textcircled{O}}$ 2015 Elsevier B.V. All rights reserved.

E-mail address: sozcag@hacettepe.edu.tr.

 $^{^{-1}}$ The author acknowledges support under Research Project Number 014D01601017 awarded by the Hacettepe University Scientific Research Unit.

If \mathcal{O} denotes the collection of all open covers of X, then the selection principle $S_{fin}(\mathcal{O},\mathcal{O})$ (resp. $S_1(\mathcal{O},\mathcal{O})$) is called the *Menger property* (*Rothberger property*).

Let \mathcal{D} denote the family of dense subspaces of a topological space X. In [19] the selection principles $S_{fin}(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D})$ were first introduced and in [3] the spaces satisfying $S_{fin}(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D})$ are called M-separable and R-separable, respectively. Also in [7] the selection properties $S_{fin}(\mathcal{D}, \mathcal{D}^{gp})$ and $S_1(\mathcal{D}, \mathcal{D}^{gp})$ were introduced, where \mathcal{D}^{gp} is the family of groupable dense subsets of a space, later on called H-separability (in a little bit modified form) and GN-separability, respectively. These selection properties have been studied by several authors [1-4,9,17]. Recently, a new version of selective separability in non-regular topological spaces has been introduced in [5] by using the notions of θ -closure and θ -density.

Although several papers on selective separability have been published so far there are very few papers with bitopological spaces and selection principles which are mainly related to function spaces [11,15,16]. The first study of selection principles theory in the bitopological context began with the paper [13] about selective versions of separability in bitopological spaces and continued in [14], where some results on selection principles in the bitopological context related to function spaces were obtained.

General references for undefined notions regarding to selection principles in topological spaces include [10,12,18,20].

In this paper we introduce a new version of separability by using θ -closure and θ -density in the bitopological context.

Recall that a point $x \in X$ is a θ -cluster point of a subset $S \subseteq X$ if $\operatorname{Cl}(U) \cap S \neq \emptyset$ for each open set U containing x. The set of all θ -cluster points of S is called the θ -closure of S and is denoted by $\operatorname{Cl}_{\theta}(S)$ [21]. A subset $S \subseteq X$ is said to be θ -dense in X if $\operatorname{Cl}_{\theta}(S) = X$. If X contains a countable θ -dense subset, then X is said to be θ -separable.

We end this introduction with a few words about the relationship between selection principle theory and game theory.

 $G_{fin}(\mathcal{A}, \mathcal{B})$ denotes an infinitely long game for two players, ONE and TWO, who play a round for each positive integer. In the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO responds by choosing a finite set $B_n \subset A_n$. The play $(A_1, B_1, \dots, A_n, B_n, \dots)$ is won by TWO if $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$; otherwise, ONE wins.

 $G_1(\mathcal{A}, \mathcal{B})$ denotes a similar game, but in the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, while TWO responds by choosing an element $b_n \in A_n$. TWO wins a play $(A_1, b_1; \dots; A_n, b_n; \dots)$ if $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

It is evident that if ONE does not have a winning strategy in the game $G_1(\mathcal{A}, \mathcal{B})$ (resp. $G_{fin}(\mathcal{A}, \mathcal{B})$) then the selection hypothesis $S_1(\mathcal{A}, \mathcal{B})$ (resp. $S_{fin}(\mathcal{A}, \mathcal{B})$) is true. The converse implication need not be always true.

2. Bitopological M^{θ} - and R^{θ} -separability

Throughout this paper (X, τ_1, τ_2) , sometime written simply X, will be a bitopological space (shortly bispace), i.e. the set X endowed with two topologies τ_1 and τ_2 . For a subset A of X, $\operatorname{Cl}_i(A)$ will denote the closure of A in (X, τ_i) , i = 1, 2.

We begin with some definitions we will do with.

Definition 2.1. Let (X, τ_1, τ_2) be a bitopological space. A subset A of X is θ -bidense (θ -double dense or d_{θ} -dense) in X if A is θ -dense in both (X, τ_1) and (X, τ_2) .

X is d_{θ} -separable if there is a countable set A which is θ -bidense in X. We will denote the family of all θ -dense sets in X by \mathcal{D}_{θ} .

Now let us denote by \mathcal{D}_1^{θ} and \mathcal{D}_2^{θ} the collection of all θ -dense subsets of (X, τ_1) and (X, τ_2) , respectively.

Definition 2.2. Let (X, τ_1, τ_2) be a bitopological space. Then X is:

Download English Version:

https://daneshyari.com/en/article/4657864

Download Persian Version:

https://daneshyari.com/article/4657864

Daneshyari.com