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1. Introduction

We suppose the reader to be familiar with the basic notions and facts of shape theory, which can be
found in [4,8,19,5].

Recall that the shapes Sh(X) and Sh(Y) are called factors of the shape Sh(X x Y) = Sh(X) x Sh(Y)
(in both pointed and unpointed cases).

The shape Sh(X) is said to be prime, if it is non-trivial and cannot be decomposed into a product of two
non-trivial shapes (see, for example, [2,3], [4, Ch. XII, $11], [5]). Similarly, we define prime (or irreducible)
homotopy types.

Some high dimensional examples of compacta (even polyhedra') with two different decompositions into
a product of prime factors in the homotopy (or equivalently, shape) category were published in the sixties-
seventies by P. Hilton and J. Roitberg [12], A. Sieradski [24], see also L. Charlap [6].
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1 Here every polyhedron is assumed to be finite and connected.
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In 1972, at the Topological Conference in Thilisi, K. Borsuk posed the following question [2, p. 141],
published also in his monograph “Theory of Shape” [4, Problem (11.4), p. 356], see also [7, Problem (5.7)]:

Problem 1. Does there exist a 3-dimensional compactum X such that Sh(X) has two different decompositions
into prime factors?

In this note we will show that the answer to this question is positive: there exists a 3-dimensional
continuum X such that Sh(X) has two different decompositions into prime factors of dimension 1 and 2
(Theorem 1).

At the Topological Conference in Herceg-Novi (1968) Borsuk asked about decompositions of shapes of
compacta into prime factors of dimensions less than 3 [1, p. 100], see also [4, Problem (11.6), p. 357].

Problem 2. Does there exist a compactum X such that Sh(X) has two different decompositions into a finite
number of prime factors which are shapes of at most 2-dimensional compacta?

Theorem 1 gives simultaneously the positive answer to Problem 2.

The questions in consideration may be stated in both, pointed and unpointed, versions. The counterex-
amples are suitable for both cases. (In the sequel, for the simplicity, the basepoints will be omitted.)

2. Main results

Let us begin with some definitions:
Definition. (1) A group homomorphism f : A — S*, where S* is the circle group, is called a character of A.
(2) The character group, x(A), of an Abelian topological group A is the group of all continuous characters
with the compact-open topology. (3) If A is a locally compact Abelian group, then the character group x(A)

is also a locally compact Abelian group (cf. [22,21, Ch. 6]).

Remark 1. For a discrete Abelian group A, A is countable if and only if x(A) is metrizable (cf. [9, “Pontryagin

duality”]).
Definition. (1) A finite set of elements aq,...,a; in an Abelian group is said to be linearly dependent over
Z if there exist integers nq,...,nk, not all equal to zero, such that Zleniai = 0. If such numbers do not

exist, the set is linearly independent. (2) The rank of an Abelian group A is defined as the maximal number
of elements of A which are linearly independent over Z (cf. [21]). (Every Abelian group that is not a torsion
group has maximal linearly independent sets and the cardinality of all maximal linearly independent sets
is the same.)

Remark 2. If A is a discrete Abelian topological group, then x(A) is a compact Abelian topological group
[21, Ch. 6, p. 235] and dim x(A) = rank A [21, Theorem 47, p. 259].

Definition. An Abelian group is called indecomposable (or irreducible) if it is nontrivial and cannot be
expressed as a direct product A @ B of two proper direct factors A and B (compare [13, Definition 3.1,

p. 83]).

The examples of compacta with desired properties will be constructed as the character groups of discrete
torsion-free Abelian countable groups with suitable properties and by the Pontryagin duality. This method
was earlier used, for example, in [23,18].
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