

Contents lists available at ScienceDirect

Topology and its Applications

Spaces C(X) with ordered bases $\stackrel{\Rightarrow}{\approx}$

Topolog and it Application

J.C. Ferrando^{a,*}, J. Kąkol^{b,c}, M. López-Pellicer^d

^a Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Spain

^b Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland

^c Institute of Mathematics, Czech Academy of Sciences, Praha, Czech Republic

^d Depto. de Matemática Aplicada and IUMPA, Universitat Politècnica de València, E-46022 Valencia,

Spain

ARTICLE INFO

Article history: Received 27 September 2015 Received in revised form 17 March 2016 Accepted 8 May 2016 Available online 16 May 2016

MSC: 54D70 46E10 22A05 Keywords: ©-base C-Suslin space Web-compact space

Strict angelicity

ABSTRACT

The concept of Σ -base of neighborhoods of the identity of a topological group G is introduced. If the index set $\Sigma \subseteq \mathbb{N}^{\mathbb{N}}$ is unbounded and directed (and if additionally each subset of Σ which is bounded in $\mathbb{N}^{\mathbb{N}}$ has a bound at Σ) a base $\{U_{\alpha} : \alpha \in \Sigma\}$ of neighborhoods of the identity of a topological group G with $U_{\beta} \subseteq U_{\alpha}$ whenever $\alpha \leq \beta$ with $\alpha, \beta \in \Sigma$ is called a Σ -base (a Σ_2 -base). The case when $\Sigma = \mathbb{N}^{\mathbb{N}}$ has been noticed for topological vector spaces (under the name of \mathfrak{G} -base) at [2]. If X is a separable and metrizable space which is not Polish, the space $C_c(X)$ has a Σ -base but does not admit any \mathfrak{G} -base. A topological group which is Fréchet–Urysohn is metrizable iff it has a Σ_2 -base of the identity. Under an appropriate ZFC model the space $C_c(\omega_1)$ has a Σ_2 -base which is not a \mathfrak{G} -base. We also prove that (i) every compact set in a topological group with a Σ_2 -base of neighborhoods of the identity is metrizable, (ii) a $C_p(X)$ space has a Σ_2 -base iff X is countable, and (iii) if a space $C_c(X)$ has a Σ_2 -base then X is a C-suslin space, hence $C_c(X)$ is angelic. \otimes 2016 Elsevier B.V. All rights reserved.

1. Preliminaries

In what follows \mathbb{N} will design the set of positive integers equipped with the discrete topology. The product space $\mathbb{N}^{\mathbb{N}}$ is supposed to be provided with the pointwise partial order, i.e., such that $\alpha \leq \beta$ whenever $\alpha(i) \leq \beta(i)$ for every $i \in \mathbb{N}$. In the sequel Σ will always design a topological subspace of $\mathbb{N}^{\mathbb{N}}$. We shall say that a subset Δ of $\mathbb{N}^{\mathbb{N}}$ is (pointwise) bounded if $\sup \{\alpha(k) : \alpha \in \Delta\} < \infty$ for every $k \in \mathbb{N}$, otherwise will be called unbounded. A covering $\{A_{\alpha} : \alpha \in I\}$ of a topological space X is said to swallow the compact sets if for each compact set Q in X there is $\gamma \in I$ such that $Q \subseteq A_{\gamma}$. If the covering $\{A_{\alpha} : \alpha \in I\}$ consists of compact sets, we shall speak of a *compact covering*.

* Corresponding author.

 $^{^{*}}$ Supported by Grant PROMETEO/2013/058 of the Conselleria de Educación, Investigación, Cultura y Deportes of Generalitat Valenciana. The second author also supported by the GACR Project 16-34860L and RVO: 67985840.

E-mail addresses: jc.ferrando@umh.es (J.C. Ferrando), kakol@amu.edu.pl (J. Kąkol), mlopezpe@mat.upv.es (M. López-Pellicer).

Unless otherwise stated X will be a (Hausdorff) completely regular space and C(X) will denote the linear space of real-valued continuous functions defined on X. We shall write $C_p(X)$ or $C_c(X)$ when endowed C(X) with the pointwise or the compact-open topology, respectively. All topological spaces are supposed to be Hausdorff. Let us recall that a topological space X is called C-Suslin if there is a subspace Σ of $\mathbb{N}^{\mathbb{N}}$ and a map $T: \Sigma \to \mathcal{P}(X)$ such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$ and if $\{\alpha_n\} \subseteq \Sigma$ converges in $\mathbb{N}^{\mathbb{N}}$ and $x_n \in T(\alpha_n)$ for every $n \in \mathbb{N}$ then $\{x_n\}$ has a cluster point in X (see [15]). A topological space X is called web-compact if there is a map T from a subspace Σ of $\mathbb{N}^{\mathbb{N}}$ into $\mathcal{P}(X)$ such that $\bigcup \{T(\alpha) : \alpha \in \Sigma\} = X$ and if $\alpha_n \to \alpha$ in Σ and $x_n \in T(\alpha_n)$ for all $n \in \mathbb{N}$ then $\{x_n\}$ has a cluster point in X (see [13, Definition]). Clearly, every C-Suslin space is web-compact. A topological space X is angelic if relatively countably compact sets in X are relatively compact and for every relatively compact subset A of X each point of \overline{A} is the limit of a sequence of A (see [9]). A topological space is strictly angelic if X is angelic and every compact subset of X is separable.

A completely regular space X is said to be *M*-dominated by a completely regular space M if there is a compact covering \mathcal{B} of X of the form $\mathcal{B} = \{B_K : K \in \mathcal{K}(M)\}$, where $\mathcal{K}(M)$ stands for the family of all compact sets of M, satisfying that $B_K \subseteq B_Q$ whenever $K \subseteq Q$. If in addition \mathcal{B} swallows the compact sets of X, then X is said to be strongly *M*-dominated, see [3].

In this paper we introduce the notion of a Σ -base of neighborhoods of the identity of a topological group (Definition 3 below), which is a family 'smaller' than a \mathfrak{G} -base (see [2]). We show that if X is a separable metrizable space which is not a Polish space, then $C_c(X)$ admits a Σ -base of neighborhoods of the origin but not a \mathfrak{G} -base (Theorem 7). We also consider a special type of Σ -bases, named Σ_2 -bases, that share some important properties with \mathfrak{G} -bases (Definition 11). We show that, under appropriate set-theoretical conditions, there exists a Σ_2 -base which is not a \mathfrak{G} -base (Example 20). We also prove other results stated in Abstract.

2. Σ -bases and distinguishing examples

A topological group G is said to have a \mathfrak{G} -base if there is a base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of neighborhoods of the identity e in G such that $U_{\beta} \subseteq U_{\alpha}$ whenever $\alpha \leq \beta$. Clearly, every metrizable topological group has a \mathfrak{G} -base. Conversely, every Fréchet–Urysohn topological group with a \mathfrak{G} -base is metrizable, [11, Theorem 1.2].

A space $C_c(X)$ has a \mathfrak{G} -base of (absolutely convex) neighborhoods of the origin if and only if X has a covering $\mathcal{A} = \{A_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ made up of compact sets such that (i) $A_\alpha \subseteq A_\beta$ whenever $\alpha \leq \beta$, and (ii) \mathcal{A} swallows the compact sets (see [6, Theorem 2]). Combining this fact with Christensen's theorem (see [5, Theorem 3.3] or [8, Theorem 6.4]) one gets the following result which will be used, not always with explicit mention, along the paper.

Proposition 1. For a metrizable space X the following are equivalent

- (1) X is a Polish space.
- (2) $C_c(X)$ has a \mathfrak{G} -base of neighborhoods of the origin.

Since $X = \mathbb{R}^{\mathbb{N}}$ is Polish but not hemicompact, the previous proposition ensures that $C_c(X)$ is a non-metrizable locally convex space with a \mathfrak{G} -base.

Following [14], a (Hausdorff) topological group G has the strong Pytkeev property if there exists a sequence \mathcal{D} of subsets of G satisfying the property: for each neighborhood U of the unit e and each $A \subseteq G$ with $e \in \overline{A} \setminus A$, there is $D \in \mathcal{D}$ such that $D \subseteq U$ and $D \cap A$ is infinite. In [10, Theorem 5] we showed that any topological group G with the strong Pytkeev property admits a quasi- \mathfrak{G} -base $\{U_{\alpha} : \alpha \in \Sigma\}$ of the identity, i.e., an ordered base of neighborhoods of e over some $\Sigma \subseteq \mathbb{N}^{\mathbb{N}}$.

Download English Version:

https://daneshyari.com/en/article/4657890

Download Persian Version:

https://daneshyari.com/article/4657890

Daneshyari.com