

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

(H,G)-coincidence theorems for free G-spaces

a Apolica

Francielle R. de C. Coelho^{a,1}, Edivaldo L. dos Santos^{b,*,2}

^a Universidade Federal de Uberlândia, Faculdade de Matemática, 38408-100, Uberlândia MG, Brazil
^b Universidade Federal de São Carlos, Departamento de Matemática, 13565-905, São Carlos SP, Brazil

ARTICLE INFO

Article history: Received 18 November 2015 Received in revised form 26 March 2016 Accepted 4 April 2016 Available online 8 April 2016

Keywords: (H, G)-coincidence point Free G-action Genus of a G-space

ABSTRACT

Let us consider G a group acting freely on a Hausdorff paracompact topological space X and let Y be a k-dimensional metrizable space (or k-dimensional CW-complex). In this paper, by using the genus of X, gen (X,G), we prove (H,G)-coincidence theorems for maps $f: X \to Y$. Such theorems generalize the main theorem proved by Aarts, Fokkink and Vermeer in [1] and the main result proved by dos Santos and Coelho in [11].

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that X, Y are topological spaces, G is a group acting freely on X and $f: X \to Y$ is a continuous map. If H is a subgroup of G, then H acts on the right on each orbit Gx of G as follows: if $y \in Gx$ and y = gx, $g \in G$, then hy = ghx. Following [5–7,9], the concept of G-coincidence is generalized as follows: a point $x \in X$ is said to be a (H,G)-coincidence point of f if f sends every orbit of the action of H on the G-orbit of x to a single point. If H is the trivial subgroup, then every point of X is a (H,G)-coincidence. If H = G, this is the usual definition of coincidence. If $G = \mathbb{Z}_p$, with p prime, then a nontrivial (H,G)-coincidence point is a G-coincidence point.

Aarts, Fokkink and Vermeer [1, Theorem 1] proved that if $i: X \to X$ is a fixed-point free involution of a normal space X with color number n + 2 and k is a natural number then for every k-dimensional cone CW-complex Y and every continuous map $\varphi: X \to Y$ there is a \mathbb{Z}_2 -coincidence, whenever $n \ge 2k$; and this result is the best possible. Let us observe that for $X = S^n$ the result was obtained independently by Shchepin in [12]. Dos Santos and Coelho [11, Theorem 1.1], by using the genus of X, gen (X, \mathbb{Z}_p) , generalized the Aarts, Fokkink and Vermeer's result for free \mathbb{Z}_p -actions, where p is prime.

 $[\]ast\,$ Corresponding author.

E-mail addresses: francielle@famat.ufu.br (F.R.C. Coelho), edivaldo@dm.ufscar.br (E.L. dos Santos).

 $^{^1\,}$ The author was supported by CAPES.

 $^{^2\,}$ The author was supported by FAPESP of Brazil, Grants 2012/24454-8 and 2013/10353-8.

In this paper, we extended the results proved in [1,11] for free *G*-actions, where *G* is a finite group. Specifically, we prove the following result:

Theorem 1.1. Let G be a finite group which acts freely on a Hausdorff paracompact space X, with $gen(X,G) \ge n+1$ and let k be a natural number.

(a) If n > |G|k and Y is a k-dimensional metrizable space, then every continuous map $f : X \to Y$ has a (H,G)-coincidence point, for some nontrivial subgroup $H \subset G$.

(b) If n = |G|k and Y is a k-dimensional cone CW-complex, then every continuous map $f : X \to Y$ has a (H, G)-coincidence point, for some nontrivial subgroup $H \subset G$.

(c) If n < |G|k and gen(X,G) = n + 1, then there exists a k-dimensional cone CW-complex Y and a continuous map $f: X \to Y$ such that f has no G-coincidence points. In particular, if $G = H = \mathbb{Z}_p$, f has no (H,G)-coincidence points.

Remark 1.2. Theorem 1.1 is a natural generalization of [11, Theorem 1.1]. In the particular case, where $G = H \cong \mathbb{Z}_p$, to detect (H, G)-coincidence points with H nontrivial subgroup of G is equivalent to detect G-coincidence points. Also, by using Theorem 2.3, which states that gen(X, G) = n + 1 is equivalent to col(X, G) = n + |G|, we conclude that Theorem 1.1 generalizes [1, Theorem 1].

In the case that Y is a cone CW-complex, Theorem 1.1 shows that the inequality $n \ge |G|k$ is the best condition for the existence of (H, G)-coincidences. Moreover, for n = |G|k, this results can not be extended to a wider class of CW-complex Y of dimension k.

Example 1.3. It is enough to consider [11, Example 1.2], with $G = \mathbb{Z}_p$. Consider $Y = \Delta_{s-1}^{ps+p-2}$ (the (s-1)-skeleton of the (ps+p-2)-simplex) and $Y^* = \prod_{i=1}^p Y^i - \Delta$, where $Y^i = Y$, for all i and Δ is the diagonal. We have that $G = \mathbb{Z}_p$ acts freely on Y^* and Y^* is a Hausdorff paracompact space. Moreover, it follows from [16] and [2] that gen $(Y^*, \mathbb{Z}_p) = p(s-1) + 1$.

Define $\pi : Y^* \to Y$ by $\pi(y_1, \ldots, y_p) = y_1$, for all $(y_1, \ldots, y_p) \in Y^*$ and clearly π has no \mathbb{Z}_p -coincidence points. From this, we conclude that Theorem 1.1 does not hold in the case n = |G|k, when Y is any CW-complex.

2. Preliminaries

Aarts, Brouwer, Fokkink and Vermeer, in [2], defined the genus, gen(X, G), in the sense of Svarc, as follows.

Let G be a finite group which acts freely on a Hausdorff paracompact space X. Let G^* denote $G \setminus \{e\}$. We say that an open subset U of X is a color if $U \cap g \cdot U = \emptyset$ for all $g \in G^*$ and we shall say that a cover \mathcal{U} of X by colors is a coloring. If (X, G) admits a finite coloring, then the color number $\operatorname{col}(X, G)$ is the minimal cardinality of a coloring. If U is a color, then the set $G \cdot U = \bigcup_{g \in G} g \cdot U$ is called a set of the first kind

and $G \cdot U$ is said to be *generated* by the color U. As G is a group, the collection $\{g \cdot U | g \in G\}$ is pairwise disjoint. The space X together with the group action is usually called a G-space.

Definition 2.1. Suppose that X is a G-space and let U be a color. The genus, gen(X, G), is defined as the minimal cardinality of a covering of X by sets of the first kind.

It follows from the definition that the genus in non-decreasing under equivariant maps.

Proposition 2.2. Let X and Y be Hausdorff paracompact free G-spaces and let $f : X \to Y$ be a G-equivariant map. Then, gen $(X, G) \leq \text{gen}(Y, G)$.

Download English Version:

https://daneshyari.com/en/article/4657911

Download Persian Version:

https://daneshyari.com/article/4657911

Daneshyari.com