Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The structure of Whitney blocks $\stackrel{\Leftrightarrow}{\approx}$

Maria Elena Aguilera^{a,*}, Alejandro Illanes^b

 ^a Centro de Bachillerato Tecnológico Industrial y de Servicios 94 (C.B.T.i.s. 94), Periodista Roberto Pita Cornejo 17, Col. Emiliano Zapata, Pátzcuaro, Mich. 61607, Mexico
^b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, D.F. 04510, Mexico

ARTICLE INFO

Article history: Received 1 September 2015 Received in revised form 17 March 2016 Accepted 17 March 2016 Available online 12 April 2016

MSC: primary 54B20 secondary 54F15

Keywords: Arc Arc-like Circle-like Continuum Hyperspace Simple closed curve Simple triod Whitney block Whitney level Whitney map

1. Introduction

A continuum is a compact connected metric space with more than one point. Given a continuum X, a subcontinuum of X is a closed, nonempty and connected subset of X. That is, $A \subset X$ is a subcontinuum of X if A is a continuum with the induced topology or A is a one-point set. We consider the hyperspace

* Corresponding author.

http://dx.doi.org/10.1016/j.topol.2016.03.015 0166-8641/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

Let X be a metric continuum and C(X) the hyperspace of subcontinua of X. A Whitney block is a set of the form $\mu^{-1}([s,t])$, where $\mu : C(X) \to [0,1]$ is a Whitney map and $0 \leq s < t < 1$. In this paper we study continua for which Whitney blocks are homeomorphic to $X \times [0,1]$. We characterize an arc, a simple closed curve and simple *n*-ods in terms of Whitney blocks. We also show that if X is arc-like, then each Whitney block for C(X) is 2-cell-like; and if X is circle-like, then each Whitney block of the form $\mu^{-1}([0,t])$ is ring-like.

© 2016 Elsevier B.V. All rights reserved.

^{*} This paper was partially supported by the projects "Teoría de continuos e hiperespacios (0221413)" of Consejo Nacional de Ciencia y Tecnología (CONACYT), 2013 and "Teoría de Continuos, Hiperespacios y Sistemas Dinámicos" (IN104613) of PAPIIT, DGAPA, UNAM.

E-mail addresses: aguilera@matem.unam.mx (M.E. Aguilera), illanes@matem.unam.mx (A. Illanes).

C(X) defined as

 $C(X) = \{ A \subset X : A \text{ is a subcontinuum of } X \}.$

The hyperspace C(X) is considered with the Hausdorff metric H [4, Theorem 2.2].

We also consider the subset of the hyperspace consisting of singletons $F_1(X) = \{\{p\} \in C(X) : p \in X\}$, which is isometric to X.

A Whitney map for C(X) is a continuous function $\mu: C(X) \to [0,1]$ such that:

(a) $\mu(\{p\}) = 0$ for each $p \in X$,

(b) if $A, B \in C(X)$ and $A \subsetneq B$, then $\mu(A) < \mu(B)$ and

(c) $\mu(X) = 1$.

It is known [4, Theorem 13.4] that for every continuum X, C(X) admits Whitney maps.

A Whitney level for C(X) is a set of the form $\mu^{-1}(t)$, where 0 < t < 1. A Whitney block for C(X) is a set of the form $\mu^{-1}([s,t])$, where $0 \le s < t < 1$. An initial Whitney block is a set of the form $\mu^{-1}([0,t])$, where 0 < t < 1.

Whitney levels have been widely studied. Many properties and references about Whitney levels can be found in [4]. On the other hand, there are only few known properties for Whitney blocks. In this paper and in [1] we introduce a systematic study on these blocks.

In this paper we study continua X for which Whitney blocks are homeomorphic to $X \times [0,1]$. We characterize arcs, simple closed curves and simple *n*-ods in terms of their Whitney blocks. We show that if X is arc-like, then each Whitney block for C(X) is 2-cell-like; and if X is circle-like, then each initial Whitney block for C(X) is ring-like.

2. Some models for Whitney blocks

An *n*-cell is a continuum homeomorphic to the product $[0,1]^n$. A ring is a continuum homeomorphic to $S^1 \times [0,1]$.

Given an integer $n \ge 3$, a simple n-od is a continuum X homeomorphic to the cone over a discrete space with n points. The vertex of X is the vertex of the cone and the legs of the X are the arcs that join the vertex to one point in the base of the cone. A simple 3-od is a simple triod. A triod is a continuum X for which there is a subcontinuum B such that X - B has at least three components.

For a continuum X and $A, B \in C(X)$ such that $A \subset B$, an order arc from A to B is a continuous function $\alpha : [0,1] \to C(X)$ such that $\alpha(0) = A$, $\alpha(1) = B$ and $\alpha(u) \subset \alpha(v)$ if $0 \le u \le v \le 1$. It is known [4, Theorem 14.6] that if $A, B \in C(X)$ and $A \subset B$, then there exist order arcs from A to B.

Theorem 2.1. Whitney blocks for C([0,1]) are 2-cells.

Proof. Let $\mu : C([0,1]) \to [0,1]$ be a Whitney map, $0 \le s < t < 1$ and $\mathcal{A} = \mu^{-1}([s,t])$. Let $\sigma : C([0,1]) - \{[0,1]\} \to [0,1]$ be given by $\sigma([a,b]) = \frac{a}{1-b+a}$. Then σ has the following properties: (a) σ is well defined and continuous, (b) $\sigma([a,b]) = 0$ if and only if a = 0, (c) $\sigma([a,b]) = 1$ if and only if b = 1. Define $\varphi : \mathcal{A} \to [0,1]^2$ by

$$\varphi([a,b]) = (\sigma([a,b]), \frac{\mu([a,b]) - s}{t - s}).$$

Clearly, φ is a well defined continuous function.

Download English Version:

https://daneshyari.com/en/article/4657916

Download Persian Version:

https://daneshyari.com/article/4657916

Daneshyari.com