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The purpose of this paper is to study the topology of certain toric varieties XI , 
arising as quotients of the action of C∗ on complements of arrangements of 
coordinate subspaces in Cn, and to improve the homotopy stability dimension for 
the inclusion map id : Hol∗d(S2, XI) → Map∗

d(S2, XI) given in [11] by making use of 
the Vassiliev spectral sequence.
We also improve the homotopy stability dimension of this inclusion given by G. Segal 
[18] for XI = CPn−1 and n ≥ 3.

© 2016 Published by Elsevier B.V.

1. Introduction

1.1. Coordinate subspaces and the spaces XI

Let n ≥ 2 be a positive integer and let [n] denote the set [n] = {0, 1, 2, · · · , n − 1}. For each subset 
σ = {i1, · · · , is} ⊂ [n], let Lσ ⊂ Cn denote the coordinate subspace in Cn defined by

Lσ = {(x0, x1, · · · , xn−1) ∈ Cn : xi1 = · · · = xis = 0}. (1.1)
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Let I be any collection of subsets of [n] such that card(σ) ≥ 2 for all σ ∈ I, where card(σ) denotes the 
number of elements in σ. Let YI ⊂ Cn be the complement of the arrangement of coordinate subspaces defined 
by

YI = Cn \
⋃
σ∈I

Lσ = Cn \ L(I), where we set L(I) =
⋃
σ∈I

Lσ. (1.2)

Consider the natural free C∗-action on YI given by coordinate-wise multiplication and let XI denote the 
orbit space given by

XI = YI/C∗ = (Cn \ L(I))/C∗. (1.3)

Note that XI coincides with the complex variety considered in [11, page 437], and that there is a principal 
C∗-bundle

YI
pI−→ XI . (1.4)

Example 1.1. (i) If I = I(n) = {{0, 1, · · · , n − 1}}, L(I(n)) = {0} and we can identify XI(n) with the 
(n − 1)-dimensional complex projective space CPn−1, i.e. XI(n) = (Cn \ {0})/C∗ = CPn−1.

(ii) If n ≥ 3 and I = J(n) = {{i, j} : 0 ≤ i < j < n}, we can identify XJ(n) with the subspace of CPn−1

given by XJ(n) = CPn−1 \
⋃

0≤i<j<n Hi,j , where Hi,j = {[x0 : · · · : xn−1] ∈ CPn−1 : xi = xj = 0}.1 In 
general, we easily see that XI = CPn−1 \

⋃
σ∈I Hσ, where

Hσ = {[x0 : · · · : xn−1] ∈ CPn−1 : xj = 0 for all j ∈ σ}. �
The algebraic torus Tn−1

C
= (C∗)n−1 acts on XI in the natural manner

(t1, · · · , tn−1) · [x0 : · · ·xn−1] = [x0 : t1x1 : · · · : tn−1xn−1] (1.5)

for ((t1, · · · , tn−1), [x0 : · · · : xn−1]) ∈ Tn−1
C

× XI , and it is easy to see that XI is a smooth toric variety. 
Note that XI is a non-compact toric variety (its fan is not complete) if I �= I(n).

1.2. The simplicial complex K(I)

There is an alternative and better known way to construct the spaces XI . Recall that a simplicial complex
K on an index set [n] = {0, 1, 2, · · · , n − 1} is a collection of subsets σ of [n] which satisfies the condition 
that any τ ⊂ σ is contained in K if σ ∈ K.2 For a simplicial complex K on the index set [n], let U(K)
denote the complement of the arrangement of coordinate subspaces given by

U(K) = Cn \
⋃

σ/∈K,σ⊂[n]

Lσ. (1.6)

Now recall the following useful result.

1 To simplify the notation we will write Xn for XJ(n), as in [11].
2 In this paper a simplicial complex means an abstract simplicial complex and we assume that any simplicial complex contains 

the empty set ∅.
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