# The homotopy type of spaces of coprime polynomials revisited 

A. Kozlowski ${ }^{\text {a,* }}$, K. Yamaguchi ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland<br>${ }^{\text {b }}$ Department of Mathematics, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

## A R T I C L E I N F O

## Article history:

Received 12 June 2015
Received in revised form 29
November 2015
Accepted 30 March 2016
Available online 20 April 2016

## $M S C$ :

primary 55 P 10
secondary 55R80, 55P35, 14M25
Keywords:
Coordinate subspace
Polyhedral product
Fan
Toric variety
Primitive generator
Holomorphic map
Homotopy equivalence
Simplicial resolution
Vassiliev spectral sequence


#### Abstract

The purpose of this paper is to study the topology of certain toric varieties $X_{I}$, arising as quotients of the action of $\mathbb{C}^{*}$ on complements of arrangements of coordinate subspaces in $\mathbb{C}^{n}$, and to improve the homotopy stability dimension for the inclusion map $i_{d}: \operatorname{Hol}_{d}^{*}\left(S^{2}, X_{I}\right) \rightarrow \operatorname{Map}_{d}^{*}\left(S^{2}, X_{I}\right)$ given in [11] by making use of the Vassiliev spectral sequence. We also improve the homotopy stability dimension of this inclusion given by G. Segal [18] for $X_{I}=\mathbb{C} P^{n-1}$ and $n \geq 3$.


© 2016 Published by Elsevier B.V.

## 1. Introduction

### 1.1. Coordinate subspaces and the spaces $X_{I}$

Let $n \geq 2$ be a positive integer and let $[n]$ denote the set $[n]=\{0,1,2, \cdots, n-1\}$. For each subset $\sigma=\left\{i_{1}, \cdots, i_{s}\right\} \subset[n]$, let $L_{\sigma} \subset \mathbb{C}^{n}$ denote the coordinate subspace in $\mathbb{C}^{n}$ defined by

$$
\begin{equation*}
L_{\sigma}=\left\{\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \mathbb{C}^{n}: x_{i_{1}}=\cdots=x_{i_{s}}=0\right\} \tag{1.1}
\end{equation*}
$$

[^0]Let $I$ be any collection of subsets of $[n]$ such that $\operatorname{card}(\sigma) \geq 2$ for all $\sigma \in I$, where $\operatorname{card}(\sigma)$ denotes the number of elements in $\sigma$. Let $Y_{I} \subset \mathbb{C}^{n}$ be the complement of the arrangement of coordinate subspaces defined by

$$
\begin{equation*}
Y_{I}=\mathbb{C}^{n} \backslash \bigcup_{\sigma \in I} L_{\sigma}=\mathbb{C}^{n} \backslash L(I), \quad \text { where we set } \quad L(I)=\bigcup_{\sigma \in I} L_{\sigma} . \tag{1.2}
\end{equation*}
$$

Consider the natural free $\mathbb{C}^{*}$-action on $Y_{I}$ given by coordinate-wise multiplication and let $X_{I}$ denote the orbit space given by

$$
\begin{equation*}
X_{I}=Y_{I} / \mathbb{C}^{*}=\left(\mathbb{C}^{n} \backslash L(I)\right) / \mathbb{C}^{*} \tag{1.3}
\end{equation*}
$$

Note that $X_{I}$ coincides with the complex variety considered in [11, page 437], and that there is a principal $\mathbb{C}^{*}$-bundle

$$
\begin{equation*}
Y_{I} \xrightarrow{p_{I}} X_{I} . \tag{1.4}
\end{equation*}
$$

Example 1.1. (i) If $I=I(n)=\{\{0,1, \cdots, n-1\}\}, L(I(n))=\{0\}$ and we can identify $X_{I(n)}$ with the $(n-1)$-dimensional complex projective space $\mathbb{C} P^{n-1}$, i.e. $X_{I(n)}=\left(\mathbb{C}^{n} \backslash\{\mathbf{0}\}\right) / \mathbb{C}^{*}=\mathbb{C P}^{n-1}$.
(ii) If $n \geq 3$ and $I=J(n)=\{\{i, j\}: 0 \leq i<j<n\}$, we can identify $X_{J(n)}$ with the subspace of $\mathbb{C P}^{n-1}$ given by $X_{J(n)}=\mathbb{C} P^{n-1} \backslash \bigcup_{0 \leq i<j<n} H_{i, j}$, where $H_{i, j}=\left\{\left[x_{0}: \cdots: x_{n-1}\right] \in \mathbb{C P}^{n-1}: x_{i}=x_{j}=0\right\} .{ }^{1}$ In general, we easily see that $X_{I}=\mathbb{C P}{ }^{n-1} \backslash \bigcup_{\sigma \in I} H_{\sigma}$, where

$$
H_{\sigma}=\left\{\left[x_{0}: \cdots: x_{n-1}\right] \in \mathbb{C P}^{n-1}: x_{j}=0 \text { for all } j \in \sigma\right\} .
$$

The algebraic torus $\mathbb{T}_{\mathbb{C}}^{n-1}=\left(\mathbb{C}^{*}\right)^{n-1}$ acts on $X_{I}$ in the natural manner

$$
\begin{equation*}
\left(t_{1}, \cdots, t_{n-1}\right) \cdot\left[x_{0}: \cdots x_{n-1}\right]=\left[x_{0}: t_{1} x_{1}: \cdots: t_{n-1} x_{n-1}\right] \tag{1.5}
\end{equation*}
$$

for $\left(\left(t_{1}, \cdots, t_{n-1}\right),\left[x_{0}: \cdots: x_{n-1}\right]\right) \in \mathbb{T}_{\mathbb{C}}^{n-1} \times X_{I}$, and it is easy to see that $X_{I}$ is a smooth toric variety. Note that $X_{I}$ is a non-compact toric variety (its fan is not complete) if $I \neq I(n)$.

### 1.2. The simplicial complex $K(I)$

There is an alternative and better known way to construct the spaces $X_{I}$. Recall that a simplicial complex $K$ on an index set $[n]=\{0,1,2, \cdots, n-1\}$ is a collection of subsets $\sigma$ of $[n]$ which satisfies the condition that any $\tau \subset \sigma$ is contained in $K$ if $\sigma \in K .{ }^{2}$ For a simplicial complex $K$ on the index set $[n]$, let $U(K)$ denote the complement of the arrangement of coordinate subspaces given by

$$
\begin{equation*}
U(K)=\mathbb{C}^{n} \backslash \bigcup_{\sigma \notin K, \sigma \subset[n]} L_{\sigma} . \tag{1.6}
\end{equation*}
$$

Now recall the following useful result.

[^1]
# https://daneshyari.com/en/article/4657921 

Download Persian Version:

## https://daneshyari.com/article/4657921

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: akoz@mimuw.ed.pl (A. Kozlowski), kohhei@im.uec.ac.jp (K. Yamaguchi).

[^1]:    ${ }^{1}$ To simplify the notation we will write $X_{n}$ for $X_{J(n)}$, as in [11].
    ${ }^{2}$ In this paper a simplicial complex means an abstract simplicial complex and we assume that any simplicial complex contains the empty set $\emptyset$.

