

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The homotopy type of spaces of coprime polynomials revisited

and its Applications

A. Kozlowski^{a,*}, K. Yamaguchi^b

^a Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland ^b Department of Mathematics, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu,

Tokyo 182-8585, Japan

A R T I C L E I N F O

Article history: Received 12 June 2015 Received in revised form 29 November 2015 Accepted 30 March 2016 Available online 20 April 2016

MSC: primary 55P10 secondary 55R80, 55P35, 14M25

Keywords: Coordinate subspace Polyhedral product Fan Toric variety Primitive generator Holomorphic map Homotopy equivalence Simplicial resolution Vassiliev spectral sequence

ABSTRACT

The purpose of this paper is to study the topology of certain toric varieties X_I , arising as quotients of the action of \mathbb{C}^* on complements of arrangements of coordinate subspaces in \mathbb{C}^n , and to improve the homotopy stability dimension for the inclusion map $i_d : \operatorname{Hol}^*_d(S^2, X_I) \to \operatorname{Map}^*_d(S^2, X_I)$ given in [11] by making use of the Vassiliev spectral sequence.

We also improve the homotopy stability dimension of this inclusion given by G. Segal [18] for $X_I = \mathbb{C}P^{n-1}$ and $n \ge 3$.

@ 2016 Published by Elsevier B.V.

1. Introduction

1.1. Coordinate subspaces and the spaces X_I

Let $n \geq 2$ be a positive integer and let [n] denote the set $[n] = \{0, 1, 2, \dots, n-1\}$. For each subset $\sigma = \{i_1, \dots, i_s\} \subset [n]$, let $L_{\sigma} \subset \mathbb{C}^n$ denote the coordinate subspace in \mathbb{C}^n defined by

$$L_{\sigma} = \{ (x_0, x_1, \cdots, x_{n-1}) \in \mathbb{C}^n : x_{i_1} = \cdots = x_{i_s} = 0 \}.$$
(1.1)

* Corresponding author.

http://dx.doi.org/10.1016/j.topol.2016.03.0330166-8641/© 2016 Published by Elsevier B.V.

E-mail addresses: akoz@mimuw.ed.pl (A. Kozlowski), kohhei@im.uec.ac.jp (K. Yamaguchi).

Let I be any collection of subsets of [n] such that $\operatorname{card}(\sigma) \geq 2$ for all $\sigma \in I$, where $\operatorname{card}(\sigma)$ denotes the number of elements in σ . Let $Y_I \subset \mathbb{C}^n$ be the complement of the arrangement of coordinate subspaces defined by

$$Y_I = \mathbb{C}^n \setminus \bigcup_{\sigma \in I} L_\sigma = \mathbb{C}^n \setminus L(I), \quad \text{where we set} \quad L(I) = \bigcup_{\sigma \in I} L_\sigma.$$
(1.2)

Consider the natural free \mathbb{C}^* -action on Y_I given by coordinate-wise multiplication and let X_I denote the orbit space given by

$$X_I = Y_I / \mathbb{C}^* = (\mathbb{C}^n \setminus L(I)) / \mathbb{C}^*.$$
(1.3)

Note that X_I coincides with the complex variety considered in [11, page 437], and that there is a principal \mathbb{C}^* -bundle

$$Y_I \xrightarrow{p_I} X_I. \tag{1.4}$$

Example 1.1. (i) If $I = I(n) = \{\{0, 1, \dots, n-1\}\}, L(I(n)) = \{\mathbf{0}\}$ and we can identify $X_{I(n)}$ with the (n-1)-dimensional complex projective space \mathbb{CP}^{n-1} , i.e. $X_{I(n)} = (\mathbb{C}^n \setminus \{\mathbf{0}\})/\mathbb{C}^* = \mathbb{CP}^{n-1}$.

(ii) If $n \ge 3$ and $I = J(n) = \{\{i, j\} : 0 \le i < j < n\}$, we can identify $X_{J(n)}$ with the subspace of \mathbb{CP}^{n-1} given by $X_{J(n)} = \mathbb{CP}^{n-1} \setminus \bigcup_{0 \le i < j < n} H_{i,j}$, where $H_{i,j} = \{[x_0 : \cdots : x_{n-1}] \in \mathbb{CP}^{n-1} : x_i = x_j = 0\}$.¹ In general, we easily see that $X_I = \mathbb{CP}^{n-1} \setminus \bigcup_{\sigma \in I} H_{\sigma}$, where

$$H_{\sigma} = \{ [x_0 : \dots : x_{n-1}] \in \mathbb{C}\mathbb{P}^{n-1} : x_j = 0 \text{ for all } j \in \sigma \}.$$

The algebraic torus $\mathbb{T}^{n-1}_{\mathbb{C}} = (\mathbb{C}^*)^{n-1}$ acts on X_I in the natural manner

$$(t_1, \cdots, t_{n-1}) \cdot [x_0 : \cdots : x_{n-1}] = [x_0 : t_1 x_1 : \cdots : t_{n-1} x_{n-1}]$$
(1.5)

for $((t_1, \dots, t_{n-1}), [x_0 : \dots : x_{n-1}]) \in \mathbb{T}^{n-1}_{\mathbb{C}} \times X_I$, and it is easy to see that X_I is a smooth toric variety. Note that X_I is a non-compact toric variety (its fan is not complete) if $I \neq I(n)$.

1.2. The simplicial complex K(I)

There is an alternative and better known way to construct the spaces X_I . Recall that a simplicial complex K on an index set $[n] = \{0, 1, 2, \dots, n-1\}$ is a collection of subsets σ of [n] which satisfies the condition that any $\tau \subset \sigma$ is contained in K if $\sigma \in K$.² For a simplicial complex K on the index set [n], let U(K) denote the complement of the arrangement of coordinate subspaces given by

$$U(K) = \mathbb{C}^n \setminus \bigcup_{\sigma \notin K, \sigma \subset [n]} L_{\sigma}.$$
(1.6)

Now recall the following useful result.

¹ To simplify the notation we will write X_n for $X_{J(n)}$, as in [11].

² In this paper a simplicial complex means an abstract simplicial complex and we assume that any simplicial complex contains the empty set \emptyset .

Download English Version:

https://daneshyari.com/en/article/4657921

Download Persian Version:

https://daneshyari.com/article/4657921

Daneshyari.com