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We introduce a new homology theory of uniform spaces, provisionally called 
μ-homology theory. Our homology theory is based on hyperfinite chains of microsim-
plices. This idea is due to McCord. We prove that μ-homology theory satisfies the 
Eilenberg–Steenrod axioms. The characterization of chain-connectedness in terms 
of μ-homology is provided. We also introduce the notion of S-homotopy, which is 
weaker than uniform homotopy. We prove that μ-homology theory satisfies the S-
homotopy axiom, and that every uniform space can be S-deformation retracted to 
a dense subset. It follows that for every uniform space X and any dense subset A
of X, X and A have the same μ-homology. We briefly discuss the difference and 
similarity between μ-homology and McCord homology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

McCord [1] introduced a homology of topological spaces using nonstandard methods. McCord’s theory 
is based on hyperfinite chains of microsimplices. Intuitively, microsimplices are abstract simplices with 
infinitesimal diameters. Garavaglia [2] proved that McCord homology coincides with Čech homology for 
compact spaces. Živaljević [3] proved that McCord cohomology also coincides with Čech cohomology for 
locally contractible paracompact spaces. Korppi [4] proved that McCord homology coincides with Čech 
homology with compact supports for regular Hausdorff spaces.

In this paper, we introduce a new microsimplicial homology theory of uniform spaces, provisionally 
called μ-homology theory. μ-homology theory satisfies the Eilenberg–Steenrod axioms. Vanishing of the 0-th 
reduced μ-homology characterizes chain-connectedness. We also introduce the notion of S-homotopy, which 
is weaker than uniform homotopy. μ-homology theory satisfies the S-homotopy axiom. Hence μ-homology is 
an S-homotopy invariant. Every uniform space can be S-deformation retracted to a dense subset. It follows 
that for every uniform space X and any dense subset A of X, X and A have the same μ-homology. We 
briefly discuss the difference and similarity between μ-homology and McCord homology.
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The basics of nonstandard analysis are assumed. We fix a universe U, the standard universe, satisfying 
sufficiently many axioms of ZFC. All standard objects we consider belong to U. We also fix an elementary 
extension ∗U of U, the internal universe, that is |U|+-saturated. The map x �→ ∗x denotes the elementary 
embedding from U into ∗U. We say “by transfer” to indicate the use of the elementary equivalence between 
U and ∗U. We say “by saturation” when using the saturation property of ∗U.

Let us enumerate some well-known facts of nonstandard topology. Let X be a topological space. The 
monad of x ∈ X is μ (x) =

⋂
{ ∗U | x ∈ U ∈ τ }, where τ is the topology of X. A subset U of X is open if 

and only if μ (x) ⊆ ∗U for all x ∈ U . A subset F of X is closed if and only if μ (x) ∩ ∗F �= ∅ implies x ∈ F

for all x ∈ X. A subset K of X is compact if and only if for any x ∈ ∗K there is a y ∈ K with x ∈ μ (y). 
A map f : X → Y of topological spaces is continuous at x ∈ X if and only if for any y ∈ μ (x) we have 
∗f (y) ∈ μ (f (x)).

Next, let X be a uniform space. Two points x, y of ∗X are said to be infinitely close, denoted by x ≈ y, 
if for any entourage U of X we have (x, y) ∈ ∗U . ≈ is an equivalence relation on ∗X. The monad of x ∈ X

is equal to μ (x) = { y ∈ ∗X | x ≈ y }. Thus, in the case of uniform spaces, one can define the monad of 
x ∈ ∗X. For each entourage U of X, the U -neighbourhood of x ∈ X is U [x] = { y ∈ X | (x, y) ∈ U }. A map 
f : X → Y of uniform spaces is uniformly continuous if and only if x ≈ y implies ∗f (x) ≈ ∗f (y) for all 
x, y ∈ ∗X.

Let {Xi }i∈I be a family of uniform spaces. Let P be the product 
∏

i∈I Xi of {Xi }i∈I , and let Q be the 
coproduct 

∐
i∈I Xi of {Xi }i∈I . Let ≈X denote the “infinitely close” relation of a uniform space X. For any 

x, y ∈ P , x ≈P y if and only if x (i) ≈Xi
y (i) for all i ∈ I. For any x, y ∈ Q, x ≈Q y if and only if there is 

an i ∈ I such that x, y ∈ Xi and x ≈Xi
y.

2. Definition of μ-homology theory

Let X be a uniform space and G an internal abelian group. We denote by CpX the internal free abelian 
group generated by ∗Xp+1, and by Cp (X;G) the internal abelian group of all internal homomorphisms 
from CpX to G. Each member of Cp (X;G) can be represented in the form 

∑n
i=0 giσi, where { gi }ni=0 is an 

internal hyperfinite sequence of members of G, and {σi }ni=0 is an internal hyperfinite sequence of members of 
∗Xp+1. A member (a0, . . . , ap) of ∗Xp+1 is called a p-microsimplex if ai ≈ aj for all i, j ≤ p, or equivalently, 
μ (a0)∩· · ·∩μ (ap) �= ∅. A member of Cp (X;G) is called a p-microchain if it can be represented in the form ∑n

i=0 giσi, where { gi }ni=0 is an internal hyperfinite sequence of members of G, and {σi }ni=0 is an internal 
hyperfinite sequence of p-microsimplices. We denote by Mp (X;G) the subgroup of Cp (X;G) consisting of 
all p-microchains. The boundary map ∂p : Mp (X;G) → Mp−1 (X;G) is defined by

∂p (a0, . . . , ap) =
p∑

i=0
(−1)i (a0, . . . , âi, . . . , ap) .

More precisely, we first define an internal map ∂′
p : Cp (X;G) → Cp−1 (X;G) by the same equation. We see 

that ∂′
p (Mp (X;G)) ⊆ Mp−1 (X;G). ∂p is defined as the restriction of ∂′

p to Mp (X;G). Thus M• (X;G)
forms a chain complex.

Let f : X → Y be a uniformly continuous map. By the nonstandard characterization of uniform continu-
ity, we see that for every p-microsimplex (a0, . . . , ap) on X, (∗f (a0) , . . . ∗f (ap)) is a p-microsimplex on Y . 
The induced homomorphism M• (f ;G) : M• (X;G) → M• (Y ;G) of f is defined by

Mp (f ;G) (a0, . . . , ap) = (∗f (a0) , . . . ∗f (ap)) .

Thus we have the functor M• (·;G) from the category of uniform spaces to the category of chain complexes. 
μ-homology theory is the composition of functors H• (·;G) = H•M• (·;G), where H• in the right hand side 
is the ordinary homology theory of chain complexes.
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