Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Nonstandard homology theory for uniform spaces

Takuma Imamura

Department of Mathematics, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

ARTICLE INFO

Article history: Received 28 February 2016 Accepted 23 May 2016 Available online 30 May 2016

MSC: 55N35 54J05

Keywords: Homology theory Nonstandard analysis Uniform space Chain-connected space Homotopy equivalence

1. Introduction

ABSTRACT

We introduce a new homology theory of uniform spaces, provisionally called μ -homology theory. Our homology theory is based on hyperfinite chains of microsimplices. This idea is due to McCord. We prove that μ -homology theory satisfies the Eilenberg–Steenrod axioms. The characterization of chain-connectedness in terms of μ -homology is provided. We also introduce the notion of S-homotopy, which is weaker than uniform homotopy. We prove that μ -homology theory satisfies the S-homotopy axiom, and that every uniform space can be S-deformation retracted to a dense subset. It follows that for every uniform space X and any dense subset A of X, X and A have the same μ -homology. We briefly discuss the difference and similarity between μ -homology and McCord homology.

© 2016 Elsevier B.V. All rights reserved.

McCord [1] introduced a homology of topological spaces using nonstandard methods. McCord's theory is based on hyperfinite chains of microsimplices. Intuitively, microsimplices are abstract simplices with infinitesimal diameters. Garavaglia [2] proved that McCord homology coincides with Čech homology for compact spaces. Živaljević [3] proved that McCord cohomology also coincides with Čech cohomology for locally contractible paracompact spaces. Korppi [4] proved that McCord homology coincides with Čech homology with compact supports for regular Hausdorff spaces.

In this paper, we introduce a new microsimplicial homology theory of uniform spaces, provisionally called μ -homology theory. μ -homology theory satisfies the Eilenberg–Steenrod axioms. Vanishing of the 0-th reduced μ -homology characterizes chain-connectedness. We also introduce the notion of S-homotopy, which is weaker than uniform homotopy. μ -homology theory satisfies the S-homotopy axiom. Hence μ -homology is an S-homotopy invariant. Every uniform space can be S-deformation retracted to a dense subset. It follows that for every uniform space X and any dense subset A of X, X and A have the same μ -homology. We briefly discuss the difference and similarity between μ -homology and McCord homology.

E-mail address: s1240008@ems.u-toyama.ac.jp.

The basics of nonstandard analysis are assumed. We fix a universe \mathbb{U} , the standard universe, satisfying sufficiently many axioms of ZFC. All standard objects we consider belong to \mathbb{U} . We also fix an elementary extension $*\mathbb{U}$ of \mathbb{U} , the internal universe, that is $|\mathbb{U}|^+$ -saturated. The map $x \mapsto *x$ denotes the elementary embedding from \mathbb{U} into $*\mathbb{U}$. We say "by transfer" to indicate the use of the elementary equivalence between \mathbb{U} and $*\mathbb{U}$. We say "by saturation" when using the saturation property of $*\mathbb{U}$.

Let us enumerate some well-known facts of nonstandard topology. Let X be a topological space. The monad of $x \in X$ is $\mu(x) = \bigcap \{ *U \mid x \in U \in \tau \}$, where τ is the topology of X. A subset U of X is open if and only if $\mu(x) \subseteq *U$ for all $x \in U$. A subset F of X is closed if and only if $\mu(x) \cap *F \neq \emptyset$ implies $x \in F$ for all $x \in X$. A subset K of X is compact if and only if for any $x \in *K$ there is a $y \in K$ with $x \in \mu(y)$. A map $f : X \to Y$ of topological spaces is continuous at $x \in X$ if and only if for any $y \in \mu(x)$ we have $*f(y) \in \mu(f(x))$.

Next, let X be a uniform space. Two points x, y of *X are said to be infinitely close, denoted by $x \approx y$, if for any entourage U of X we have $(x, y) \in *U$. \approx is an equivalence relation on *X. The monad of $x \in X$ is equal to $\mu(x) = \{y \in *X \mid x \approx y\}$. Thus, in the case of uniform spaces, one can define the monad of $x \in *X$. For each entourage U of X, the U-neighbourhood of $x \in X$ is $U[x] = \{y \in X \mid (x, y) \in U\}$. A map $f: X \to Y$ of uniform spaces is uniformly continuous if and only if $x \approx y$ implies $*f(x) \approx *f(y)$ for all $x, y \in *X$.

Let $\{X_i\}_{i\in I}$ be a family of uniform spaces. Let P be the product $\prod_{i\in I} X_i$ of $\{X_i\}_{i\in I}$, and let Q be the coproduct $\prod_{i\in I} X_i$ of $\{X_i\}_{i\in I}$. Let \approx_X denote the "infinitely close" relation of a uniform space X. For any $x, y \in P, x \approx_P y$ if and only if $x(i) \approx_{X_i} y(i)$ for all $i \in I$. For any $x, y \in Q, x \approx_Q y$ if and only if there is an $i \in I$ such that $x, y \in X_i$ and $x \approx_{X_i} y$.

2. Definition of μ -homology theory

Let X be a uniform space and G an internal abelian group. We denote by C_pX the internal free abelian group generated by ${}^*X^{p+1}$, and by $C_p(X;G)$ the internal abelian group of all internal homomorphisms from C_pX to G. Each member of $C_p(X;G)$ can be represented in the form $\sum_{i=0}^{n} g_i\sigma_i$, where $\{g_i\}_{i=0}^{n}$ is an internal hyperfinite sequence of members of G, and $\{\sigma_i\}_{i=0}^{n}$ is an internal hyperfinite sequence of members of ${}^*X^{p+1}$. A member (a_0, \ldots, a_p) of ${}^*X^{p+1}$ is called a *p*-microsimplex if $a_i \approx a_j$ for all $i, j \leq p$, or equivalently, $\mu(a_0) \cap \cdots \cap \mu(a_p) \neq \emptyset$. A member of $C_p(X;G)$ is called a *p*-microchain if it can be represented in the form $\sum_{i=0}^{n} g_i\sigma_i$, where $\{g_i\}_{i=0}^{n}$ is an internal hyperfinite sequence of members of G, and $\{\sigma_i\}_{i=0}^{n}$ is an internal hyperfinite sequence of *p*-microsimplices. We denote by $M_p(X;G)$ the subgroup of $C_p(X;G)$ consisting of all *p*-microchains. The boundary map $\partial_p : M_p(X;G) \to M_{p-1}(X;G)$ is defined by

$$\partial_p (a_0, \dots, a_p) = \sum_{i=0}^p (-1)^i (a_0, \dots, \hat{a}_i, \dots, a_p)$$

More precisely, we first define an internal map $\partial'_p : C_p(X;G) \to C_{p-1}(X;G)$ by the same equation. We see that $\partial'_p(M_p(X;G)) \subseteq M_{p-1}(X;G)$. ∂_p is defined as the restriction of ∂'_p to $M_p(X;G)$. Thus $M_{\bullet}(X;G)$ forms a chain complex.

Let $f: X \to Y$ be a uniformly continuous map. By the nonstandard characterization of uniform continuity, we see that for every *p*-microsimplex (a_0, \ldots, a_p) on X, $(*f(a_0), \ldots, *f(a_p))$ is a *p*-microsimplex on Y. The induced homomorphism $M_{\bullet}(f; G) : M_{\bullet}(X; G) \to M_{\bullet}(Y; G)$ of f is defined by

$$M_p(f;G)(a_0,\ldots,a_p) = (*f(a_0),\ldots *f(a_p)).$$

Thus we have the functor $M_{\bullet}(\cdot; G)$ from the category of uniform spaces to the category of chain complexes. μ -homology theory is the composition of functors $H_{\bullet}(\cdot; G) = H_{\bullet}M_{\bullet}(\cdot; G)$, where H_{\bullet} in the right hand side is the ordinary homology theory of chain complexes. Download English Version:

https://daneshyari.com/en/article/4657928

Download Persian Version:

https://daneshyari.com/article/4657928

Daneshyari.com