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This paper investigates the structure of points u ∈ AN that are such that the 
omega-limit set ω(u, σ) is precisely X, where X ⊆ AN is an internally transitive shift 
space. We then use those results to study the possible structures of the omega-limit 
set of the turning point for a unimodal map. Examples are provided of unimodal 
maps f where no iterate of the turning point c is recurrent and ω(c, f) is either a 
minimal Cantor set or properly contains a minimal Cantor set.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is a great deal of literature focusing on the dynamics of a unimodal map of an interval to itself 
[5,7,9]. Of interest within this family of maps is the behavior of the map restricted to the omega-limit set 
of the turning point. This paper is motivated by the problem of characterizing when ω(c, f) is a Cantor 
set and the action f |ω(c,f) is a minimal continuous map; for brevity we refer to this situation as one where 
ω(c, f) is a minimal Cantor set.

Because unimodal maps can be studied from a symbolic point of view (for example, in terms of itineraries 
of points and kneading sequences), in order to understand the omega-limit set of the turning point we may 
study omega-limit sets within the shift space {0, 1}N. In [1], the question was posed whether it is possible 
to have ω(c, f) a minimal Cantor set when every point in the orbit of c is non-recurrent. This question 
is equivalent to the problem of constructing a shift maximal sequence u ∈ {0, 1}N such that ω(u, σ) is a 
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minimal Cantor set but σk(u) /∈ ω(u, σ) for all k ∈ N. In investigating this question we became interested 
in further determining which shift spaces can be realized as the omega-limit set of the turning point for a 
unimodal map when the turning point is non-recurrent. Thus, the main theorems of this paper investigate 
the more general question of how to construct a given shift space X ⊆ AN as the omega-limit set of a point 
u ∈ AN. In [2] it was shown that a shift space X ⊆ AN can be generated as the omega-limit set of a point 
u ∈ AN if and only if X is internally transitive; we provide a constructive characterization of the points 
u ∈ AN such that ω(u, σ) = X.

In Section 2 we establish the terminology and notation that will be used throughout this paper. Section 3
investigates which shift spaces X ⊆ AN can be generated as the omega-limit set of a point u ∈ AN and 
characterizes the structure of u for a given shift space X. We then determine when u can be constructed as 
a point in X and when u can be constructed such that no shift of u is in X. In Section 4 we apply the results 
from Section 3 to gain a better understanding of the structure of the omega-limit set of the turning point 
for a unimodal map. Theorem 4.2 classifies those shift spaces X that are topologically conjugate to ω(c, f)
for some unimodal map f , and in Theorem 4.5 it is shown that the set of parameters in the tent family for 
which ω(c, T ) is a minimal Cantor set and cn /∈ ω(c, T ) for all n ∈ N is dense in [

√
2, 2]. We conclude by 

providing examples of kneading sequences K(f) generated from the construction in Theorem 3.3 such that 
ω(c, f) is either a non-minimal Cantor set or the union of a Cantor set and a countable set when no iterate 
of the turning point is recurrent.

2. Background on shift spaces and sequences

Let A be a finite set of letters called an alphabet. A finite string of letters from A is called a word, and the 
set of all finite words over A is denoted A�; for completeness, we allow ∅ to denote the empty word. We set AN

to be the set of all one-sided infinite strings of letters from A. Given a sequence x = x1x2x3 · · · ∈ AN, the shift 
map σ : AN → AN is defined by σ(x) = x2x3x4 · · ·. Let A be given the discrete metric topology and assign the 
product topology on AN by d(x, y) = 1/2n−1 where n is the least number such that x1x2 · · ·xn �= y1y2 · · · yn; 
hence AN is a compact metrizable space. A subset X ⊆ AN is called a shift space if X is closed and X is 
strongly invariant, i.e. σ(X) = X.

Given a shift space X, we let the language L = L (X) be the set of all words from A� that appear in X
and the forbidden words F = F (X) be the set of all words from A� that never appear in X. We denote by 
F ′ = F ′(X) ⊆ F the set of first offender words, i.e. those words F ∈ F such that every proper subword 
of F is in L . We additionally denote by Ln = Ln(X) the set of all words from L of length n ∈ N. We say 
that a shift space X is transitive if for every u, v ∈ L there exists a w ∈ L such that uwv ∈ L .

We get examples of transitive minimal systems by considering substitution shift spaces. A substitution
is a function θ : A → A� \ ∅ that is extended to A� or to AN by concatenation; that is, θ(xy) = θ(x)θ(y). 
A fixed point of a substitution is a sequence u ∈ AN such that θ(u) = u. We take the closure of the shift 
orbit of the fixed point u to form a substitution subshift. For more information on substitutions see [8]. We 
will use substitutions to illustrate constructions in Section 4.

We now define some terminology that is standard among arbitrary continuous maps on compact metric 
spaces.

Given f : E → E, a continuous map on a compact metric space, and a point x ∈ E, the omega-limit set 
of x under f is the set ω(x, f) = {y ∈ E | there exists n1 < n2 < · · · with fni(x) → y}. A point x ∈ E

is recurrent if for every open set U containing x, there exists m ∈ N such that fm(x) ∈ U ; equivalently, 
x is recurrent if and only if x ∈ ω(x, f). A point x ∈ E is uniformly recurrent if for every open set U
containing x, there exists an M ∈ N such that for all j ≥ 0, f j+k(x) ∈ U for some 0 < k ≤ M . In terms 
of shift spaces, a sequence w ∈ AN is recurrent if every word u appearing in w appears infinitely often in 
w and is uniformly recurrent if for any word u appearing in w, there exists an M such that every word of 
length M in w contains at least one occurrence of u. When a word u has the property that it occurs in 
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