Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

In the paper a theorem of Piccard's type is proved and, consequently, the continuity

of \mathcal{D} -measurable polynomial functions of *n*-th order as well as \mathcal{D} -measurable

n-convex functions is shown. The paper refers to the papers [6] and [9].

A theorem of Piccard's type and its applications to polynomial functions and convex functions of higher orders

Eliza Jabłońska

Department of Mathematics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland

ABSTRACT

ARTICLE INFO

Article history: Received 17 July 2015 Received in revised form 24 May 2016 Accepted 29 May 2016 Available online 2 June 2016

MSC: 54B30 54E52 39B52 39B62

Keywords: Haar meager set \mathcal{D} -measurable set \mathcal{D} -measurable function Polynomial function Convex function

1. Introduction

In 2013 U.B. Darji defined a σ -ideal of "small" sets in an abelian Polish group which is equivalent to the notation of meager sets in a locally compact group. He was motivated by J.P.R. Christensen's paper [2] where the author defined *Haar null* sets in an abelian Polish group in such a way that in a locally compact group it is equivalent to the notation of Haar measure zero sets (see also [7,8,12]).

It is well known that there are some analogies between measure and category in locally compact groups (see [14]). It turns out (see [2,3,9]) that in non-locally compact abelian Polish groups Haar meager sets have an analogous behavior to Haar null sets; e.g.

• both families are invariant σ -ideals,

© 2016 Elsevier B.V. All rights reserved.

E-mail address: elizapie@prz.edu.pl.

- $0 \in int (A A)$ for each universally measurable non-Haar null set as well as each Borel non-Haar meager set A (it constitutes the *Steinhaus dichotomy* formulated by N.H. Bingham and A.J. Ostaszewski in [1]),
- each compact set is Haar null and Haar meager,
- each set containing a translation of each compact set is non-Haar meager and non-Haar null.

Moreover, the definition of Christensen measurability introduced by P. Fischer and Z. Słodkowski in [5] seems to be analogous to the definition of \mathcal{D} -measurability from [9]; e.g.

- each Christensen measurable or *D*-measurable homomorphism is continuous (which constitutes the Darboux dichotomy from [1]),
- each Christensen measurable or \mathcal{D} -measurable t-Wright convex function is continuous

(see [5,9,10,13]).

Here we prove a theorem of Piccard's type¹ and next we show that each \mathcal{D} -measurable function which is *n*-convex with respect to the cone S is continuous, as well as each \mathcal{D} -measurable polynomial function of *n*-th order is continuous. Analogous results for Christensen measurable function have been obtained by Z. Gajda in [6].

2. Preliminaries on \mathcal{D} -measurability

The following fact will be useful in the sequel:

Theorem 1. [4, p. 90] If X is an abelian Polish group, there exists an equivalent complete metric ρ on X, which is invariant; i.e. $\rho(x, y) = \rho(x + z, y + z)$ for every $x, y, z \in X$.

Let us recall some necessary definitions and theorems from [3] and [9].

Definition 1. [3, Definition 2.1] Let X be an abelian Polish group. A set $A \subset X$ is *Haar meager* iff there is a Borel set $B \subset X$ with $A \subset B$, a compact metric space K and a continuous function $f: K \to X$ such that $f^{-1}(B+x)$ is meager in K for all $x \in X$. The family of all Haar meager sets in X we denote by \mathcal{HM} .

By the definition we can easily see that the family of all Haar meager sets is invariant, i.e. $A + x \in \mathcal{HM}$ for each $x \in X$ and $A \subset X$.

Theorem 2. [3, Theorem 2.2, Theorem 2.9] In each abelian Polish group the family \mathcal{HM} is a σ -ideal contained in the σ -ideal of all meager sets.

Remark 1. In [3] Darji proved that in a locally compact abelian Polish group the family of all Haar meager sets and the family of all meager sets are equivalent, but in each non-locally compact abelian Polish group it is not true.

Definition 2. [9, Definition 1] Let X be an abelian Polish group. A set $A \subset X$ is \mathcal{D} -measurable iff $A = B \cup M$ for a Haar meager set $M \subset X$ and a Borel set $B \subset X$.

Theorem 3. [9, Theorem 6] The family \mathcal{D} of all \mathcal{D} -measurable sets in each abelian Polish group is a σ -algebra.

¹ We call it in this way because a consequence of this theorem is the fact that $0 \in int (A - A)$; cf. [11, Theorem 2.9.1].

Download English Version:

https://daneshyari.com/en/article/4657931

Download Persian Version:

https://daneshyari.com/article/4657931

Daneshyari.com