Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Ideal structure of the classical ring of quotients of C(X)

F. Azarpanah^a, A.R. Salehi^{b,*}

^a Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
^b Department of Science, Petroleum University of Technology, Ahvaz, Iran

ARTICLE INFO

Article history: Received 8 April 2016 Received in revised form 9 June 2016 Accepted 11 June 2016 Available online 16 June 2016

MSC: 54C40

Keywords: Classical ring of quotient Maximal z° -ideal Basically disconnected space Quasi-F-space Q-point

ABSTRACT

In this paper we show that the set of z-ideals and the set of z° ideals (=d-ideals) of the classical ring of quotients q(R) (q(X)) of a reduced ring R with property A (C(X)) coincide. Using this fact, we observe that each maximal ideal of q(R) is the extension of a maximal z° -ideal of R. The members of maximal z° -ideals of C(X)contained in a given maximal ideal are topologically characterized and using this, it turns out that the extension \mathcal{O}^p of each \mathcal{O}^p , $p \in \beta X$ is a maximal ideal of q(X)if and only if X is a basically disconnected space. Topological spaces X are also characterized for which every \mathcal{O}^p is contained in a unique maximal ideal of q(X)and in this case, the maximal ideals of q(X) are characterized. Finally, using the concept of z-ideal in q(X), we characterize the regularity of q(X). For instance, we observe that q(X) is regular if and only if for each $f \in C(X)$, there exists a regular (non-zero divisor) element r such that $Z(f) \cap \cos r$ is open in $\cos r$ or equivalently, $\frac{|f|}{|r|}$ is an idempotent in q(X).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we denote by C(X) $(C^*(X))$ the ring of all (bounded) real valued continuous functions on a completely regular Hausdorff space X and all rings in this article are assumed to be commutative rings with identity. We recall that a ring satisfies property A if every finitely generated ideal consisting of zero divisors has a nonzero annihilator and it said to be reduced if it has zero nilradical. Clearly, C(X)is a reduced ring with property A. An element r of a ring R is called *regular* (nonzero divisor) if ra = 0, $a \in R$ implies that a = 0. An ideal of a ring is called *regular* if it contains a regular element, otherwise, whenever an ideal consists entirely of zero divisors, then it is called a *non-regular* ideal. We denote by r(X)the set of all regular elements of C(X) and it is easy to see that $f \in r(X)$ if and only if $int_X Z(f) = \emptyset$ or equivalently, $\cos f$ is dense in X, where the *zero-set* Z(f) is the set of zeros of f and $X \setminus Z(f) = \cos f$ is the *cozero-set* of f. The classical ring of quotients q(R) of a ring R is the ring of all equivalence classes of

* Corresponding author.

E-mail addresses: azarpanah@ipm.ir (F. Azarpanah), a.r.salehi@put.ac.ir (A.R. Salehi).

formal fractions $\frac{a}{r}$, for $a, r \in R$, where r is regular and equivalence relation is the obvious one. We will use the following well known result in the next section.

Lemma 1.1 ([11], Corollary 2.6). A ring R has property A if and only if q(R) has.

For each a in a ring R, the intersection of all maximal (minimal prime) ideals of R containing a is denoted by M_a (P_a). An ideal I in a ring R is said to be a z-ideal (z° -ideal) if for each $a \in I$, we have $M_a \subseteq I$ ($P_a \subseteq I$). The ideals M_a and P_a , for each $a \in R$, are called *basic z-ideals* and *basic z^\circ-ideals* respectively. For each $f \in C(X)$, it is easy to see that $M_f = \{g \in C(X) : Z(f) \subseteq Z(g)\}$ and $P_f = \{g \in C(X) : int_X Z(f) \subseteq$ $int_X Z(g)\}$, see also [3] and [4]. Using these equalities, an ideal I in C(X) is a z-ideal (z° -ideal) if and only if $f \in I$, $g \in C(X)$ and $Z(f) \subseteq Z(g)$ ($int_X Z(f) \subseteq int_X Z(g)$) imply that $g \in I$. Now it is clear that every z° -ideal in C(X) is a z-ideal and for an arbitrary ring we have the following result.

Lemma 1.2 ([2], Corollary 1.10). The Jacobson radical of a ring R is zero if and only if every z° -ideal is a z-ideal.

For each $p \in \beta X$, where βX is the Stone-Čech compactification of X, the ideal M^p (resp., O^p) is the set of all $f \in C(X)$ for which $p \in \operatorname{cl}_{\beta X} Z(f)$ (resp., $p \in \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} Z(f)$). By Theorem 7.3 in [8], each maximal ideal of C(X) is precisely of the form M^p , $p \in \beta X$ and each O^p is contained in the unique maximal ideal M^p , see Theorem 7.13 in [8]. In case $p \in X$, the ideals M^p and O^p are denoted by M_p and O_p respectively. Whenever a z° -ideal is maximal in the realm of z° -ideals, we call it a maximal z° -ideal. By the following lemma, every non-regular maximal ideal in a reduced ring with property A is a maximal z° -ideal.

Lemma 1.3 ([2], Corollary 1.22). If R is a reduced ring with property A, then every maximal ideal consisting only of zero divisors is a z° -ideal.

If R and S are rings and $\varphi : R \to S$ is a ring homomorphism, then for each ideal J in S, the ideal $\varphi^{-1}(J)$ is called the *contraction* of J to R and is denoted by J^c . Whenever I is an ideal of R, then the ideal I^e generated by $\varphi(I)$ is called the *extension* of I to S. When we talk about "contraction" and "extension" in this paper, we mean the natural homomorphism φ from R (C(X)) to its classical ring of quotients q(R) (q(X)) with $\varphi(a) = \frac{a}{1} (\varphi(f) = \frac{f}{1})$, where $a \in R$ $(f \in C(X))$. By the following lemma, each z° -ideal of q(R) contracts to z° -ideal of R.

Lemma 1.4 ([2], Corollary 1.8). If R is a reduced ring and $f : R \to S^{-1}R$ is the natural ring homomorphism, then every z° -ideal of $S^{-1}R$ contracts to a z° -ideal of R.

A point $p \in \beta X$ is called an *F*-point if the ideal O^p is a prime ideal in C(X) and a space X is called an *F*-space if every point of βX is an *F*-point. It is well known that X is an *F*-space if and only if every finitely generated ideal of C(X) is principal, see Theorem 14.25 in [8]. A space is said to be *basically disconnected* if the closure of every cozero-set of the space is open in the space. For undefined terms and notations, we refer the reader to [6–8] and [11].

2. z-ideals of classical rings of quotients

In this section, we show that for a reduced ring R with property A, the set of z-ideals and the set of z° -ideals of the classical ring of quotients q(R) of R coincide. Moreover, if R is a reduced ring, we also observe in this section that there is a one-to-one correspondence between z° -ideals of R and z° -ideals of q(R). First we characterize the maximal ideals of q(R) in terms of maximal z° -ideals of R, for a reduced ring R with property A.

Download English Version:

https://daneshyari.com/en/article/4657939

Download Persian Version:

https://daneshyari.com/article/4657939

Daneshyari.com