

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On a Lichnerowicz type cohomology attached to a function

Cristian Ida

Department of Mathematics and Computer Science, University Transilvania of Braşov, Braşov 500091, Str. Iuliu Maniu 50, Romania

ARTICLE INFO

Article history: Received 30 October 2015 Received in revised form 4 June 2016 Accepted 17 June 2016 Available online 21 June 2016

MSC: 58A10 58A12

Keywords:
Differential forms
Lichnerowicz cohomology
Cohomology attached to a function

ABSTRACT

In this paper we define a new cohomology of a smooth manifold called Lichnerowicz type cohomology attached to a function. Firstly, we study some basic properties of this cohomology as: a de Rham type isomorphism, dependence on the function, singular forms, relative cohomology, Mayer–Vietoris sequence, homotopy invariance and next, a regular case is considered. The notions are introduced using techniques from the study of two cohomologies of a smooth manifold: the Lichnerowicz cohomology and the cohomology attached to a function.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider a n-dimensional smooth manifold M and θ a closed 1-form on M. Denote by $\Omega^r(M)$ the set of all r-differential forms on M and consider the twisted operator $d_{\theta}: \Omega^r(M) \to \Omega^{r+1}(M)$ defined by $d_{\theta} = d - \theta \wedge$, where d is the usual exterior derivative. Since $d\theta = 0$, we easily obtain $d_{\theta}^2 = 0$. The differential complex $(\Omega^{\bullet}(M), d_{\theta})$ is called the Lichnerowicz complex of M; its cohomology groups $H_{\bullet}^{\bullet}(M)$ are called the Lichnerowicz cohomology groups of M. This is the classical Lichnerowicz cohomology, motivated by Lichnerowicz's work [14] or Lichnerowicz–Jacobi cohomology on Jacobi and locally conformal symplectic geometry manifolds, see [1,12,13], and Novikov in the context of Hamiltonian mechanics [17]. It is also known in literature as Morse–Novikov cohomology and plays an important role when studying the geometry, topology and Morse theory of the underlying manifold M, see for instance [19–22]. We also notice that Vaisman [26], studied it under the name of "adapted cohomology" in the context of locally conformally Kähler manifolds. Locally, the Lichnerowicz cohomology complex becomes the de Rham complex after a change $\varphi \mapsto e^{-f}\varphi$ with f a smooth function which satisfies $df = \theta$, that is d_{θ} is the unique differential in $\Omega^{\bullet}(M)$ which makes the multiplication by the smooth function e^{-f} an isomorphism of cochain complexes

 $e^{-f}: (\Omega^{\bullet}(M), d_{\theta}) \to (\Omega^{\bullet}(M), d)$. In the case when θ is exact, there is a related differential $\delta_{t,f} = d + tdf \wedge (t \in \mathbb{R} \text{ and } f \text{ is a Morse function on } M)$ introduced in [30] by Witten in order to obtain an analytic proof of the Morse inequalities, see also [31]. The cohomology of the deformed Witten differential is very useful in the study of the topology of the fiber $f^{-1}(c)$, see [6,7].

Other important applications of the Lichnerowicz cohomology appear when studying locally (globally) conformal structures: (co)symplectic, (co)Kähler, Jacobi, Dirac etc., and in many cases it is an invariant at conformal changes. For more about this cohomology see for instance [1,9,13,25,26,29]. Also, such a cohomology can be generalized in the context of Jacobi algebroid, that is a pair (A, θ) where $A = (A, [\cdot, \cdot]_A, \rho_A)$ is a Lie algebroid over a manifold M and $\theta \in \Gamma(A^*)$ is a 1-cocycle, i.e. $d_A\theta = 0$, see [3,8,11]. Then the twisted cohomological operator is given by $d_{A,\theta} = d_A - \theta \wedge$, and the Lichnerowicz cohomology of (M, θ) is just the Jacobi Lie algebroid cohomology of usual Lie algebroid $(TM, [\cdot, \cdot], Id)$ with the 1-cocycle θ .

On the other hand, in [16], Monnier gave the definition and basic properties of a new cohomology of a manifold, called *cohomology attached to a function*. The definition is the following: If f is a smooth function on a smooth manifold M, then we can define the linear operator $d_f: \Omega^r(M) \to \Omega^{r+1}(M)$ by

$$d_f \varphi = f d\varphi - r df \wedge \varphi, \forall \varphi \in \Omega^r(M).$$

It is easy to see that $d_f^2 = 0$, and so, we have a differential complex $(\Omega^{\bullet}(M), d_f)$ which is called the differential complex attached to the function f of M; its cohomology groups $H_f^{\bullet}(M)$ are called the cohomology groups attached to the function f of M. This cohomology was considered for the first time in [15] in the context of Poisson geometry, and more generally, Nambu–Poisson geometry.

The main difference between the operators d_f and d_θ is given by the fact that d_f is an antiderivation, i.e.

$$d_f(\varphi \wedge \psi) = d_f \varphi \wedge \psi + (-1)^{\deg \varphi} \varphi \wedge d_f \psi, \, \forall \, \varphi, \psi \in \Omega^{\bullet}(M), \tag{1.1}$$

while d_{θ} is not an antiderivation, and it satisfies

$$d_{\theta}(\varphi \wedge \psi) = d\varphi \wedge \psi + (-1)^{\deg \varphi} \varphi \wedge d_{\theta} \psi, \, \forall \, \varphi, \psi \in \Omega^{\bullet}(M). \tag{1.2}$$

Moreover, according with [16], the d_f -cohomology is just the Lie algebroid cohomology associated with a certain Lie algebroid structure $([\cdot,\cdot]_f,\rho_f)$ on TM, where the anchor is defined by $\rho_f(X)=fX$ and the Lie bracket is defined by $[X,Y]_f=(1/f)[fX,fY]$. Thus, d_f -cohomology is a Lie algebroid cohomology, while d_θ -cohomology is a Jacobi algebroid cohomology.

In this paper we introduce a generalization of the usual Lichnerowicz cohomology starting from the cohomology attached to a function. We observe that if θ is a closed one form on an arbitrary smooth manifold M and $f \in C^{\infty}(M)$ then $d_f(f\theta) = 0$, that is $(TM, f\theta)$ is a Jacobi algebroid where $(TM, [\cdot, \cdot]_f, \rho_f)$ is the above Lie algebroid. Then, it is natural to consider the cohomological differential operator $d_{f,\theta}$: $\Omega^r(M) \to \Omega^{r+1}(M)$ defined by

$$d_{f,\theta}\varphi = d_f\varphi - f\theta \wedge \varphi \,, \ \varphi \in \Omega^r(M), \tag{1.3}$$

which satisfies $d_{f,\theta} \circ d_{f,\theta} = 0$. Thus, we obtain the differential complex $(\Omega^{\bullet}(M), d_{f,\theta})$ which is called the Lichnerowicz type complex attached to the function f of M and its cohomology groups $H_{f,\theta}^{\bullet}(M)$ are called the Lichnerowicz type cohomology groups attached to the function f of M. This is just the Jacobi algebroid cohomology of $(TM, f\theta)$ with the Lie algebroid structure $([\cdot, \cdot]_f, \rho_f)$ and, using some arguments as in the study of d_f -cohomology, the main goal of this paper is to study the main properties of this new cohomology of a smooth manifold.

The paper is organized as follows: In the second section we make some remarks about our cohomology when the one form θ is exact and we relate it with globally conformal cosymplectic manifolds and with

Download English Version:

https://daneshyari.com/en/article/4657944

Download Persian Version:

https://daneshyari.com/article/4657944

Daneshyari.com