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0. Introduction

In this note we deal with Lipschitz-free compact and Lipschitz-free weakly compact operators between 
metric spaces. They are nonlinear versions of the notions of compact and weakly compact linear opera-
tors between Banach spaces. We give several characterizations of Lipschitz-free compact and Lipschitz-free 
weakly compact operators. These results are nonlinear versions of the classical theorems due to Schauder 
and Gantmacher on compact and weakly compact linear operators, respectively. We also obtain a version 
for Lipschitz-free weakly compact operators of the factorization theorem of W.J. Davis et al. [6]. Similar 
versions of these results were stated for Banach-valued Lipschitz operators in [10]. The relationships be-
tween different classes of Lipschitz operators are studied. The key tool to obtain our results is a process 
of linearization of Lipschitz mappings provided by the Lipschitz-free space over a pointed metric space. 
We dedicate the following section to recall this process and present some known classes of Lipschitz oper-
ators.
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1. Preliminaries

A pointed metric space X is a metric space with a base point that we always will represent by 0. If X is 
a normed space, 0 will be its origin. We denote by d the distance in any metric space.

Let X and Y be pointed metric spaces. Let us recall that a map f : X → Y is Lipschitz if there exists a 
real constant C ≥ 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. The infimum of such constants is 
denoted by Lip(f). In other words,

Lip(f) = sup
{
d(f(x), f(y))

d(x, y) :x, y ∈ X, x �= y

}
.

We denote by Lip0(X, Y ) the set of all Lipschitz maps f from X into Y such that f(0) = 0. The elements 
of Lip0(X, Y ) are also referred to as Lipschitz operators. If E is a Banach space over the field K of real 
or complex numbers, Lip0(X, E) is a Banach space with the Lipschitz norm Lip. The space Lip0(X, K) is 
known as the Lipschitz dual of X and denoted frequently by X#.

The Lipschitz-free Banach space F(X) over a pointed metric space X is the closed linear span in (X#)∗
of the evaluation functionals δx: X# → K with x ∈ X, where

δx(f) = f(x)
(
f ∈ X#)

.

This space was called and denoted so by G. Godefroy and N.J. Kalton in [9]. We refer to Weaver’s book 
[16] for a complete study about spaces of Lipschitz functions.

Notation. Let E and F be Banach spaces. We denote by L(E, F ) the Banach space of all bounded linear 
operators from E into F with the usual norm. K(E, F ) and W(E, F ) stand for the spaces of compact and 
weakly compact linear operators from E into F , respectively. As is customary, E∗ stands for the dual space 
of E, BE for the closed unit ball of E and JE for the canonical isometric embedding from E into E∗∗. Given 
M ⊂ E, we denote by Γ(M) the closed, convex, balanced hull of M in E. For any T ∈ L(E, F ), T ∗ denotes 
the adjoint operator of T from F ∗ into E∗.

We gather in the next theorem some properties of the Lipschitz-free space over a pointed metric space.

Theorem 1.1. Let X and Y be pointed metric spaces.

(i). The Dirac map δX : X → F(X) given by δX(x) = δx is a (nonlinear) isometry.
(ii). F(X)∗ is isometrically isomorphic to X# via the evaluation map QX : X# → F(X)∗ given by 

QX(g)(γ) = γ(g) for all g ∈ X# and γ ∈ F(X).
(iii). The closed unit ball of F(X) is the closed, convex, balanced hull in (X#)∗ of the set

{
δx − δy
d(x, y) :x, y ∈ X, x �= y

}
.

(iv). For each f ∈ Lip0(X, Y ), the Lipschitz adjoint map f#: Y # → X#, given by f#(g) = gf for all 
g ∈ Y #, is a continuous linear operator and 

∥∥f#
∥∥ = Lip(f).

(v). For each f ∈ Lip0(X, Y ), there exists a unique operator Lf ∈ L(F(X), F(Y )) such that (Lf )∗ =
QXf#(QY )−1. Furthermore, ‖Lf‖ = Lip(f).

(vi). For each f ∈ Lip0(X, Y ), there exists a unique operator Lf ∈ L(F(X), F(Y )) such that LfδX = δY f , 
that is, the following diagram commutes:
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