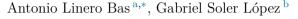
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A note on the dynamics of cyclically permuted direct product maps



 ^a Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
 ^b Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 52, 30203, Cartagena, Spain

ABSTBACT

ARTICLE INFO

Article history: Received 26 September 2014 Accepted 4 April 2015 Available online 11 January 2016

MSC: 54H20 37E99

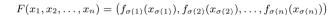
Keywords: Topological space Continuous map Discrete dynamical system Cyclic permutation Cyclically permuted direct product map Transitivity Weakly transitive Mixing Weakly mixing Semiconjugation Cournot duopoly Leslie's model

1. Introduction

Let (X, f) be a discrete dynamical system, that is, X is a topological space and f is a continuous map from X to itself. In general, given two topological spaces X, Y, we denote the set of continuous maps from X onto Y by C(X, Y).

In a discrete dynamical system (X, f) the main goal is to obtain information about the evolution in the large of the parts of the topological space X under the iteration of f. Roughly speaking, the study of this

* Corresponding author.



We obtain some results on the dynamics of maps

(we call them cyclically permuted direct product maps), defined from the Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ into itself, where X_1, X_2, \ldots, X_n are general topological spaces, each map $f_{\sigma(i)} : X_{\sigma(i)} \to X_i$ is continuous, $i = 1, \ldots, n$, and σ is a cyclic permutation of $\{1, 2, \ldots, n\}$, $n \geq 2$. We study the topics of (totally) topological transitivity and (weakly) topological mixing for cyclically permuted direct product maps from the following point of view: we analyze the relationship between the dynamics of F and that of the compositions $f_{\sigma(i)} \circ \ldots \circ f_{\sigma^n(i)}$, $i \in \{1, \ldots, n\}$.

@ 2016 Elsevier B.V. All rights reserved.

E-mail addresses: lineroba@um.es (A. Linero Bas), Gabriel.Soler@upct.es (G. Soler López).

behaviour using appropriate topological tools receives the name of *Topological Dynamics*. So, let us present some notions appearing in this setting.

First of all, recall that for an $f \in C(X, X)$, its *n*-th iterate is given by $f^n = f \circ f^{n-1}$, $n \in \mathbb{N} := \{1, 2, ...\}$, and we take f^0 as the identity map in X. We say that $x \in X$ is a *periodic point* of order $n \in \mathbb{N}$ if $f^n(x) = x$ and $f^i(x) \neq x$ for 0 < i < n. We write P(f) to denote the set of periodic points of f. A subset $A \subseteq X$ is called *invariant* if $f(A) \subseteq A$.

We say that f is topologically transitive if for any pair U and V of nonempty open sets of X there is a positive integer n depending on U and V such that $f^n(U) \cap V \neq \emptyset$ (if there is $k \in \mathbb{N}$ such that $f^m(U) \cap V \neq \emptyset$ for all $m \ge k$ we say that f is topologically mixing). If f^s is transitive for all $s \in \mathbb{N}$, f is called totally transitive. Finally, a map f is weakly mixing if $f \times f$ is transitive (in general, if $\phi \in C(X, X)$ and $\varphi \in C(Y, Y)$ the direct product map $\phi \times \varphi \in C(X \times Y, X \times Y)$ is defined to be $(\phi \times \varphi)(x, y) = (\phi(x), \varphi(y))$ for $x \in X, y \in Y$). Notice that if f^n is weakly mixing for some $n \in \mathbb{N}$ then f is also weakly mixing.

The relationship between the above notions is the following (see [3]):

mixing
$$\Rightarrow$$
 weakly mixing \Rightarrow totally transitive \Rightarrow transitive. (1.1)

In particular, in the interval case, I := [0, 1], we obtain (see [3])

$$(\text{mixing} \Leftrightarrow \text{weakly mixing} \Leftrightarrow \text{totally transitive}) \Rightarrow \text{transitive}. \tag{1.2}$$

For $n \geq 2$, consider the topological spaces X_1, X_2, \ldots, X_n and let $X_{\Pi} := \prod_{j=1}^n X_j$ denote the Cartesian product, endowed with the well-known product topology. We say that $F : X_{\Pi} \to X_{\Pi}$ is a cyclically permuted direct product map (for short, c.p.d.p. map) if

$$F(x_1, x_2, \dots, x_n) = \left(f_{\sigma(1)}(x_{\sigma(1)}), f_{\sigma(2)}(x_{\sigma(2)}), \dots, f_{\sigma(n)}(x_{\sigma(n)}) \right),$$

where $x_i \in X_i$, $f_{\sigma(i)} : X_{\sigma(i)} \to X_i$ is continuous, i = 1, ..., n, and σ is a cyclic permutation of $\{1, 2, ..., n\}$. The set of c.p.d.p. maps will be denote by $C_A(X_{\Pi}, X_{\Pi})$. The reason for choosing this notation lies in the fact that they also appear in the literature as antitriangular maps (see for instance [1], even they are called σ -permutation maps, see [2]). Notice that F^n is a direct product map, $F^n = \varphi_1 \times \ldots \times \varphi_n$, where each $\varphi_j : X_j \to X_j$ is given by

$$\varphi_j = f_{\sigma(j)} \circ f_{\sigma^2(j)} \circ \dots \circ f_{\sigma^n(j)}, \ j = 1, \dots, n.$$

$$(1.3)$$

When n = 2 and $X_1 = X_2 = [0, 1]$, this type of maps appears associated with certain economical model so called Cournot duopoly (see [6,10,4], etc.). In this case $F(x_1, x_2) = (R_2(x_2), R_1(x_1))$ and R_1 , R_2 are called *reaction maps*. Even we find them in age-structured population models, as in [7], where it is analyzed the Leslie model

$$\begin{cases} x_1(m+1) = x_N(m)g(x_N(m)), \\ x_2(m+1) = x_1(m), \\ \dots \\ x_N(m+1) = x_{N-1}(m), \end{cases}$$

where g is a C^1 -map and each variable $x_j(m)$, j = 1, ..., N, m = 0, 1, 2, ..., determines the population size of the j-age class in the m-th period, being $x_j(0)$ the initial population. To study the behaviour of this model is equivalent to discuss the dynamics of the c.p.d.p. map $F(x_1, x_2, ..., x_N) = (x_N g(x_N), x_1, ..., x_{N-1})$, where $\sigma(j) = (j-1) \pmod{N}$, j = 1, ..., N.

Download English Version:

https://daneshyari.com/en/article/4657974

Download Persian Version:

https://daneshyari.com/article/4657974

Daneshyari.com