Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

injective hull of its natural T_0 -ultra-quasi metric.

For any partially ordered set equipped with its natural T_0 -quasi-metric (T_0 -ultra-

quasi-metric), we study the connection between the ultra-quasi-metrically injective

hull and the q-hyperconvex hull. We also observe that for a partially ordered set,

its Dedekind-MacNeille completion coincides exactly with the ultra-quasi-metric

The injective hull of ultra-quasi-metric versus q-hyperconvex hull of quasi-metric space

ABSTRACT

Olivier Olela Otafudu¹

School of Mathematical Sciences, North-West University (Mafikeng campus), Mmabatho 2735, South Africa

ARTICLE INFO

Article history: Received 2 September 2014 Accepted 2 May 2015 Available online 9 February 2016

MSC 54E1554E3554E5506A06 06B23

Kenwords: Injective hull q-Hyperconvexity Partial order Dedekind-MacNeille completion Ampleness Strong tightness T_0 -quasi-metric T_0 -ultra-quasi-metric

1. Introduction

In 9 Künzi and Olela Otafudu presented the construction of the ultra-quasi-metrically injective hull in the category of T_0 -ultra-quasi-metric spaces and contracting maps. Comparable studies have been done in the category of ultra-metric spaces and contracting maps by Bayod and Martínez-Maurica (see [2]). In the category of T_0 -quasi-metric spaces and nonexpansive maps, the q-hyperconvex hull (Isbell-hull) has been studied by Kemajou et al. (see [7]). We should mention that similar investigations were presented in the category of metric spaces and nonexpansive maps independently by Isbell [6] and Dress [4]. While

CrossMark

© 2016 Elsevier B.V. All rights reserved.

E-mail address: olivier.olelaotafudu@nwu.ac.za.

¹ The author would like to thank the South African National Research Foundation for partial financial support under Grant No: 87705.

the q-hyperconvex hull of a T_0 -quasi-metric space is q-hyperconvex, the ultra-quasi-metrically injective hull of a T_0 -ultra-quasi-metric space is q-spherically complete. It is well-known that a q-spherically complete space does not need to be q-hyperconvex space. In this paper, for a partially ordered set endowed with its natural T_0 -quasi-metric (which is of course T_0 -ultra-quasi-metric), we study the connection between its q-hyperconvex hull and its ultra-quasi-metrically injective hull. In particular, we show that for a partially ordered set equipped with the natural T_0 -quasi-metric (T_0 -ultra-quasi-metric), its ultra-quasi-metrically injective hull is contained in its q-hyperconvex hull. Our investigations can be applied to study the similarity between the injective hull due to Isbell [6] and the injective hull due to Bayod and Martínez-Maurica [2]. We have to mention that recently in [5], Agyingi et al. proved that for a partially ordered set equipped with the natural T_0 -quasi-metric space, its q-hyperconvex hull contains its Dedekind–MacNeille completion.

2. Preliminaries

This section recalls the most important definitions and preliminary results that we shall use in this paper.

Definition 1. Let X be a set and let $d: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then, d is called a *quasi-pseudometric* on X if

(a) d(x, x) = 0 whenever $x \in X$,

(b) $d(x,z) \le d(x,y) + d(y,z)$ whenever $x, y, z \in X$.

We shall say that d is a T_0 -quasi-metric provided that d also satisfies the following condition: for each $x, y \in X$,

d(x, y) = 0 = d(y, x) implies that x = y.

Remark 1. Let d be a quasi-pseudometric on a set X, then $d^{-1} : X \times X \to [0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudometric, is called the *conjugate quasi-pseudometric of d*. As usual, a quasi-pseudometric d on X such that $d = d^{-1}$ is called a *pseudometric*. Note that for any (T_0) -quasi-pseudometric d, $d^s = \max\{d, d^{-1}\} = d \vee d^{-1}$ is a pseudometric (metric).

Remark 2. For a quasi-pseudometric space (X, d): we have

- 1. for each $x \in X$ and $\epsilon > 0$, $B_d(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\}$ denotes the open ϵ -ball at x,
- 2. the collection of all "open" balls yields a base for a topology $\tau(d)$. It is called the *topology induced by d* on X,
- 3. similarly we set for each $x \in X$ and $\epsilon \ge 0$, $C_d(x, \epsilon) = \{y \in X : d(x, y) \le \epsilon\}$. Note that $C_d(x, \epsilon)$ is $\tau(d^{-1})$ -closed, but not $\tau(d)$ -closed in general.

Remark 3. (compare [13, Definition 1]) A T_0 -quasi-metric space is called a T_0 -ultra-quasi-metric space if it satisfies the strong triangle inequality

$$d(x,y) \le \max\{d(x,z), d(z,y)\}, \text{ whenever } x, y, z \in X.$$

Example 1. ([10, Example 0.2.1]) Let $X = [0, \infty)$ be equipped with n(x, y) = x if x > y and n(x, y) = 0 if $x \le y$. Then (X, n) is a T_0 -ultra-quasi-metric space.

A map $f: (X, d) \to (Y, e)$ between two quasi-pseudometric spaces (X, d) and (Y, e) is called an *isometric* map provided that e(f(x), f(y)) = d(x, y) whenever $x, y \in X$. Observe that if $f: X \to Y$ is an isometric map between two quasi-pseudometric spaces X and Y and if X is a T_0 -quasi-metric space, then f is injective.

Two quasi-pseudometric spaces (X, d) and (Y, e) will be called *isometric* provided that there exists a bijective isometric map $f: (X, d) \to (Y, e)$.

Download English Version:

https://daneshyari.com/en/article/4657976

Download Persian Version:

https://daneshyari.com/article/4657976

Daneshyari.com