

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A note on the planar surface sum of Heegaard splittings $\stackrel{\star}{\approx}$

Qilong Guo^{a,b,*}, Yanqing Zou^c

^a School of Mathematical Sciences, Peking University, Beijing, 100871, China

^b College of Science, China University of Petroleum-Beijing, Beijing, 102249, China

^c Department of Mathematics, Dalian Minzu University, Dalian, LiaoNing province, 116600, China

ARTICLE INFO

Article history: Received 27 December 2014 Accepted 24 January 2016 Available online 27 February 2016

MSC: 57M27

Keywords: Stabilization Heegaard distance Surface sum

1. Introduction

ABSTRACT

In this paper, we prove that under some condition, (1) the planar surface sum of two unstabilized Heegaard splittings is unstabilized; (2) the self planar surface sum of an unstabilized Heegaard splitting is unstabilized.

@ 2016 Elsevier B.V. All rights reserved.

All manifolds are assumed to be compact and orientable, unless stated. When M is a 3-manifold with $\partial M \neq \emptyset$ and C is the union of finitely many disjoint simple closed curves on ∂M , we will always denote M[C] the 3-manifold obtained by adding 2-handles to M along C and capping off possible resulting 2-sphere boundary components with 3-balls.

A compression body V is a 3-manifold which can be obtained by attaching some number of 2-handles to $F \times [0,1]$ along finitely many simple closed curves in $F \times \{1\}$, and capping off each resulting 2-sphere boundary component with a 3-ball, where F is a closed surface. $F \times \{0\}$ is denoted by $\partial_+ V$, and $\partial V - \partial_+ V$ is denoted by $\partial_- V$. If there is a closed surface S which cuts M into two compression bodies V and W such that $S = \partial_+ V = \partial_+ W$, then we say M has a Heegaard splitting $V \cup_S W$. The genus of S is called the genus of the Heegaard splitting $V \cup_S W$. The Heegaard genus of M, denoted by g(M) is the minimal genera of all Heegaard splittings of M.

E-mail addresses: guoqilong1984@hotmail.com (Q. Guo), yanqing@dlnu.edu.cn (Y. Zou).

 $^{^{*}}$ The first author is supported by Science Foundation of China University of Petroleum-Beijing (No. 2462015YJRC034) and NSFC (No. 11271058). The second author is supported by NSF–DMU (No. 0915-150529) and NSFC (No. 11271058)

^{*} Corresponding author at: College of Science, China University of Petroleum-Beijing, Beijing, 102249, China.

When M is a Haken manifold, i.e., M is irreducible and contains an incompressible surface F, then M can be obtained by amalgamating two manifolds if F is separating in M, or by self amalgamating a connected manifold if F is non-separating. When F is closed, there are many results about unstabilized and minimal genus Heegaard splittings of amalgamations over F, see Lackenby [4], Souto [9], Li [5], Kobayashi, Qiu [3], Yang, Lei [10], Du, Qiu [2], Zou, Du, Guo, Qiu [11], etc. When F has non-empty boundary, there are only a few results, see Qiu, Wang, Zhang [8]. In this paper, we consider the case that F is a connected essential planar surface in M. Since Ma and Qiu [6] studied the amalgamation and self-amalgamation along F when F is an essential disk, we assume that $\chi(F) \leq 0$ here. In this paper, we prove following results.

Theorem 1.1. Let F be an essential planar surface in a 3-manifold M such that F separates M into two manifolds M_1 and M_2 . Let F_i be the copy of F in M_i and suppose $V_i \cup_{S_i} W_i$ is a Heegaard splitting of M_i such that $F_i \subset \partial_- W_i$ (for i = 1, 2). Suppose that $V_1 \cup_{S_1} (W_1[\partial F_1])$ and $V_2 \cup_{S_2} (W_2[\partial F_2])$ are unstabilized, then the planar surface sum (defined in Section 2) of $V_1 \cup_{S_1} W_1$ and $V_2 \cup_{S_2} W_2$ is an unstabilized Heegaard splitting of M.

Remark 1.1. In Theorem 1.1, $W_1[\partial F_1]$ is a compression body with $\partial_+(W_1[\partial F_1]) = \partial_+W_1 = S_1$ since $\partial F_1 \subset \partial_-W_1$, hence $V_1 \cup_{S_1} (W_1[\partial F_1])$ is a Heegaard splitting of $M_1[\partial F_1]$. For the same reason, $W_2[\partial F_2]$ is a compression body and $V_2 \cup_{S_2} (W_2[\partial F_2])$ is a Heegaard splitting of $M_2[\partial F_2]$.

Theorem 1.2. Let F be a non-separating essential planar surface in a 3-manifold M, and let M_1 be the manifold obtained by cutting M along F. Denote by F_1 and F_2 the two copies of $F \subset M_1$ after this cutting. Let $V_1 \cup_{S_1} W_1$ be a Heegaard splitting of M_1 such that $F_1 \cup F_2 \subset \partial_- W_1$. Suppose that $V_1 \cup_{S_1} (W_1[\partial F_1 \cup \partial F_2])$ is unstabilized, then the self planar surface sum (defined in Section 2) of $V_1 \cup_{S_1} W_1$ is an unstabilized Heegaard splitting of M.

Remark 1.2. In Theorem 1.2, we can also see $W_1([\partial F_1 \cup \partial F_2])$ is a compression body with $\partial_+(W_1[\partial F_1 \cup \partial F_2]) = \partial_+W_1 = S_1$, since $F_1 \cup F_2 \subset \partial_-W_1$. Hence we also have a Heegaard splitting $M_1[\partial F_1 \cup \partial F_2] = V_1 \cup_{S_1} W_1([\partial F_1 \cup \partial F_2])$.

2. Preliminaries

A Heegaard splitting $M = V \cup_S W$ is stabilized if there are essential disks $D \subset V$ and $E \subset W$ such that ∂D intersects ∂E in one point. Otherwise, the Heegaard splitting $V \cup_S W$ is unstabilized. Suppose there is a separating sphere F in $M = V \cup_S W$ such that $F \cap S$ is a circle, and suppose that $F \cap V = D_1$ and $F \cap W = D_2$. Then D_1 separates V into two compression bodies V'_1 and V'_2 , and D_2 separates W into two compression bodies W_1 and W_2 . Assume that V'_i and W_i are in the same side of F. Let $M'_i = V'_i \cup W_i$, then M'_i is a connected manifold and contains a sphere boundary component F_i which is a copy of F after cutting M along F. Let B_i be a 3-ball, and let $M_i = M'_i \cup_{F_i = \partial B_i} B_i$ and $V_i = V'_i \cup B_i \subset M_i$. Then $V_i \cup W_i$ is a Heegaard splitting of M_i . We say that the Heegaard splitting $V \cup W$ is the connected sum of these two Heegaard splittings of $V_1 \cup W_1$ and $V_2 \cup W_2$.

Following is a conjecture about stability of connected sum of Heegaard splittings proved by Bachman [1] and Qiu [7] independently.

Theorem 2.1 (Gordon conjecture). The connect sum of any two unstabilized Heegaard splittings is unstabilized.

Next we introduce (planar) surface sum and self (planar) surface sum of Heegaard splitting(s) as in [8], which are central notions in this paper.

Download English Version:

https://daneshyari.com/en/article/4657997

Download Persian Version:

https://daneshyari.com/article/4657997

Daneshyari.com