Notes on star Lindelöf space ${ }^{\text {th }}$

Wei-Feng Xuan ${ }^{\text {a,* }}$, Wei-Xue Shi ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Science, Nanjing Audit University, Nanjing, 210093, China
b Department of Mathematics, Nanjing University, Nanjing, 210093, China

A R T I C L E I N F O

Article history:

Received 16 May 2015
Received in revised form 3 February 2016
Accepted 23 February 2016
Available online 1 March 2016

MSC:

primary 54 D 20
secondary 54E35
Keywords:
Star Lindelöf
Cardinality
Rank k-diagonal
Star countable

Abstract

In this paper, we prove that the cardinality of a star Lindelöf space X does not exceed \mathfrak{c} if X satisfies one of the following conditions: (1) X has a rank 3-diagonal; (2) X is normal and has a rank 2-diagonal; (3) X is first countable, normal and has a G_{δ}-diagonal. Moreover, we also obtain several results concerning the general question "When must a star Lindelöf space be star countable?".

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we prove that the cardinality of a star Lindelöf space X does not exceed \mathfrak{c} if X satisfies one of the following conditions: (1) X has a rank 3-diagonal; (2) X is normal and has a rank 2-diagonal; (3) X is first countable, normal and has a G_{δ}-diagonal. Moreover, we also obtain several results concerning the general question "When must a star Lindelöf space be star countable?".

All spaces are assumed to be Hausdorff unless otherwise stated. The cardinality of a set X is denoted by $|X|$, and $[X]^{2}$ will denote the set of two-element subsets of X. We write ω for the first infinite cardinal and \mathfrak{c} for the cardinality of the continuum.

If A is a subset of X and \mathcal{U} is a family of subsets of X, then $\operatorname{St}(A, \mathcal{U})=\bigcup\{U \in \mathcal{U}: U \cap A \neq \emptyset\}$. We also put $\mathrm{St}^{0}(A, \mathcal{U})=A$ and for negative integer $n, \operatorname{St}^{n+1}(A, \mathcal{U})=\operatorname{St}\left(\operatorname{St}^{n}(A, \mathcal{U}), \mathcal{U}\right)$. If $A=\{x\}$ for some $x \in X$, then we write $\operatorname{St}^{n}(x, \mathcal{U})$ instead of $\operatorname{St}^{n}(\{x\}, \mathcal{U})$ for simplicity.

[^0]http://dx.doi.org/10.1016/j.topol.2016.02.009
0166-8641/© 2016 Elsevier B.V. All rights reserved.

Definition 1.1. Let \mathcal{P} be a topological property. A topological space X is said to be star \mathcal{P}, if for any open cover \mathcal{U} of X there is a subset $A \subset X$ with property \mathcal{P} such that $\operatorname{St}(A, \mathcal{U})=X$. The set A will be called a star kennel of the cover \mathcal{U}.

Therefore, a topological space X is said to be star Lindelöf, if for any open cover \mathcal{U} of X there is a Lindelöf subspace $A \subset X$ such that $\operatorname{St}(A, \mathcal{U})=X$.

Definition 1.2. ([1]) A diagonal sequence of rank k on a space X, where $k \in \omega$, is a countable family $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open coverings of X such that $\{x\}=\bigcap\left\{\operatorname{St}^{k}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for each $x \in X$.

Definition 1.3. ([1]) A space X has a rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\left\{\mathcal{U}_{n}\right.$: $n \in \omega\}$ on X of rank k.

We say that a topological space X has a G_{δ}-diagonal if there exists a sequence of $\left\{G_{n}: n \in \omega\right\}$ of open sets in X^{2} such that $\Delta_{X}=\bigcap\left\{G_{n}: n<\omega\right\}$, where $\Delta_{X}=\{(x, x): x \in X\}$. A space X has a G_{δ}-diagonal if and only if X has a rank 1-diagonal [11].

Definition 1.4. A space X is said to be metaLindelöf if every open cover of X has a point-countable open refinement.

All notations and terminology not explained here is given in [3].

2. Cardinal inequalities

We will use the following countable version of a set-theoretic theorem due to Erdös and Radó.
Lemma 2.1. ([6, p. 8]) Let X be a set with $|X|>c \mathfrak{c}$ and suppose $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then there exists $n_{0}<\omega$ and a subset S of X with $|S|>\omega$ such that $[S]^{2} \subset P_{n_{0}}$.

Lemma 2.2. Let $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ be a diagonal sequence on X of rank k, where $k \geq 1$. If $|X|>\mathfrak{c}$, then there exists an uncountable closed discrete subset S of X such that for any two distinct points $x, y \in S$ there exists $n_{0} \in \omega$ such that $y \notin \operatorname{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$.

Proof. By our assuming, there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that $\{x\}=$ $\bigcap\left\{\operatorname{St}^{k}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for every $x \in X$. We may suppose $\operatorname{St}^{k}\left(x, \mathcal{U}_{n+1}\right) \subset \operatorname{St}^{k}\left(x, \mathcal{U}_{n}\right)$ for any $n \in \omega$. For each $n \in \omega$ let

$$
\left.P_{n}=\left\{\{x, y\} \in[X]^{2}: x \notin \operatorname{St}^{k}\left(y, \mathcal{U}_{n}\right)\right\}\right\} .
$$

Thus, $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then by Lemma 2.1 there exists a subset S of X with $|S|>\omega$ and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. It is evident that for any two distinct points $x, y \in S, y \notin \mathrm{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$. Now we show that S is closed and discrete. If not, let $x \in X$ and suppose x were an accumulation point of S. Since X is T_{1}, each neighborhood $U \in \mathcal{U}_{n_{0}}$ of x meets infinitely many members of S. Therefore there exist distinct points y and z in $S \cap U$. Thus $y \in U \subset \operatorname{St}\left(z, \mathcal{U}_{n_{0}}\right) \subset \operatorname{St}^{k}\left(z, \mathcal{U}_{n_{0}}\right)$. It is a contradiction. Thus S has no accumulation points in X; equivalently, S is a closed and discrete subset of X. This completes the proof.

Remark 2.3. In the Lemma 2.2, if the diagonal rank of X is at least 2, i.e., $k \geq 2$, then S has a disjoint open expansion $\left\{\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right): x \in S\right\}$. Indeed, if there exist $x, y \in S$ such that $\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right) \cap \operatorname{St}\left(y, \mathcal{U}_{n_{0}}\right) \neq \emptyset$, and hence $y \in \operatorname{St}^{2}\left(x, \mathcal{U}_{n_{0}}\right) \subset \operatorname{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$. This is impossible.

https://daneshyari.com/en/article/4658002

Download Persian Version:
https://daneshyari.com/article/4658002

Daneshyari.com

[^0]: 领 The authors are supported by NSFC project 11271178 .

 * Corresponding author.

 E-mail addresses: wfxuan@nau.edu.cn (W.-F. Xuan), wxshi@nju.edu.cn (W.-X. Shi).

