Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

# Chain recurrent sets of generic mappings on compact spaces

Paweł Krupski\*, Krzysztof Omiljanowski, Konrad Ungeheuer

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

A R T I C L E I N F O

Article history: Received 26 August 2015 Received in revised form 16 January 2016 Accepted 17 January 2016

MSC: primary 54H20 secondary 37B45, 37B20

 $\begin{array}{l} Keywords: \\ \text{ANR-space} \\ \text{Chain recurrent} \\ \text{Continuum} \\ \text{Dimension} \\ LC^n\text{-space} \\ \text{Periodic} \\ \text{Polyhedron} \\ \text{Retraction} \end{array}$ 

#### ABSTRACT

Let 0-CR denote the class of all metric compacta X such that the set of maps  $f: X \to X$  with 0-dimensional sets CR(f) of chain recurrent points is a dense  $G_{\delta}$ -subset of the mapping space C(X, X) (with the uniform convergence). We prove, among others, that countable products of polyhedra or locally connected curves belong to 0-CR. Compact that admit, for each  $\epsilon > 0$ , an  $\epsilon$ -retraction onto a subspace from 0-CR belong to 0-CR themselves. Perfect ANR-compacta or n-dimensional  $LC^{n-1}$ -compact have perfect CR(f) for a generic self-map f. In the cases of polyhedra, compact Hilbert cube manifolds, local dendrites and their finite products, a generic f has CR(f) being a Cantor set and the set of periodic points of f of arbitrarily large periods is dense in CR(f). The results extend some known facts about CR(f) of generic self-maps f on PL-manifolds.

© 2016 Elsevier B.V. All rights reserved.

## 1. Introduction

For compact metric spaces X, Y, we denote by C(X, Y) the space of all continuous maps  $f : X \to Y$  with the topology of uniform convergence. If d is a metric in Y, then  $\hat{d}$  denotes the metric of uniform convergence in  $C(X, Y), \hat{d}(f, g) = \sup\{d(f(x), g(x)) : x \in X\}$ . We say that a map  $f \in C(X, X)$  with a property P is generic if the set of all maps in C(X, X) with property  $\mathcal{P}$  is residual (i.e., contains a dense  $G_{\delta}$ -subset) in C(X, X).

In this paper we investigate chain recurrent points of generic maps on some compacta. Recall that, given a map  $f: (X, d) \to (X, d)$  and  $\epsilon > 0$ , a finite set  $\{x = x_0, x_1, \dots, x_n = y\} \subset X$  is an  $\epsilon$ -chain for f from x

\* Corresponding author.







*E-mail addresses:* pawel.krupski@uwr.edu.pl (P. Krupski), Krzysztof.Omiljanowski@math.uni.wroc.pl (K. Omiljanowski), konrad.ungeheuer@gmail.com (K. Ungeheuer).

to y if  $d(f(x_{i-1}), x_i) < \epsilon$  for each i = 1, ..., n; a point x is called a *chain recurrent point* of f if, for each  $\epsilon > 0$ , there exists an  $\epsilon$ -chain for f from x to x (sometimes, x is said to have a periodic  $\epsilon$ -pseudo-orbit for each  $\epsilon$ ). The set of chain recurrent points of f is denoted by CR(f). Clearly, it contains the set Per(f) of periodic points of f.

The notion of a chain recurrent point plays an important role in dynamical systems. Some general properties of it can be found, e.g., in books [1,3,6]. There is an extensive literature devoted to generic properties of maps involving chain recurrency and related notions, where they were studied mainly for diffeo- or homeomorphisms on smooth or PL-manifolds (see, e.g., [25,26,13,14,23,2]).

In this paper, by a dimension of a metric separable space we mean its covering (or, equivalently, inductive) dimension (see [12]). Denote by 0-CR the family of all compacta X such that the set CR(f) is 0-dimensional for a generic map  $f \in C(X, X)$ . It is known that all finite graphs and PL-manifolds are in class 0-CR (see [27] and [2], resp.). Generalizing these results, we prove in Section 3 that all finite polyhedra belong to class 0-CR. In Section 4, we show that all locally connected, 1-dimensional continua are elements of 0-CR, as well. Moreover, using a small-retractions-technique, we derive similar results for all Menger compacta, compact Hilbert cube manifolds and some important non-locally connected continua. The technique also gives us immediately that all countable (finite or infinite) products as well as cones and suspensions over these compacta are members of 0-CR.

A stronger property of a generic map f, of having CR(f) homeomorphic to the Cantor set C, is formulated in [2] for PL-manifolds (the proof in [2], however, is only barely sketched at the very end of the memoir). In Section 6 we provide a short proof that CR(f) has no isolated points for a generic map  $f : X \to X$ if X is a perfect ANR or X is a perfect n-dimensional  $LC^{n-1}$ -compactum; moreover, if such X has the local periodic point property, then Per(f) has no isolated points and is dense in CR(f); moreover, for each integer  $l \ge 2$ , periodic points of periods  $\ge l$  form a dense subset of CR(f). In particular, if X is a finite polyhedron, a compact Hilbert cube manifold, a local dendrite or a finite product of these spaces, then CR(f) is a Cantor set containing Per(f) as a dense subset for a generic f.

Sometimes we can also claim that a generic self-map is zero-dimensional. This is true in the cases of ANRcompacta with coinciding finite dimensions  $\dim = ped$ , where *ped* is the piecewise embedding dimension in the sense of [16], Menger manifolds and countable products of locally connected curves, among others.

Finally, we observe that a measure-theoretical result of [27] that CR(f) is of measure zero for a generic map  $f \in C(X, X)$ , if X is an n-dimensional  $LC^{n-1}$  perfect compactum equipped with a Borel, finite, non-atomic measure, extends on all mentioned above compacta.

### 2. Some general properties

The following characterization of chain recurrent points is very useful.

**Proposition 2.1.** ([7]) For any compact space X and  $f \in C(X, X)$ ,  $x \notin CR(f)$  if and only if there exists an open set  $U \subset X$  such that  $x \notin U$ ,  $f(x) \in U$  and  $f(\overline{U}) \subset U$ .

It follows easily from this proposition that (for each compact space X and  $f \in C(X, X)$ ), the set CR(f) is nonempty, closed and invariant under f [6].

We will use the following fact.

**Fact 2.2.** ([7]) The set-valued function

$$CR: C(X, X) \to 2^X, \quad f \mapsto CR(f)$$

defined on a compact metric space X, is upper semi-continuous.

Download English Version:

# https://daneshyari.com/en/article/4658051

Download Persian Version:

https://daneshyari.com/article/4658051

Daneshyari.com