

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The Baire property in the compact-open topology of Lašnev spaces

Glenn Hughes

Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, United States

ARTICLE INFO

Article history: Received 11 July 2015 Received in revised form 1 January 2016 Accepted 25 January 2016

MSC: 54E52 54C35

Keywords: Compact-open topology Baire property Moving off property Lašnev spaces

ABSTRACT

Finding an internal condition on a topological space X which is necessary and sufficient for the compact-open topology $C_k(X)$ to be Baire is an open problem. The moving off property is a known characterization for the class of first-countable or locally compact spaces. Here we show that it also holds for the class of closed images of first-countable paracompact spaces, hence Lašnev spaces in particular; furthermore, Baireness of $C_k(X)$ is equivalent to its α -favorability for X in this class. We will also show that if X is the closed image of a locally compact paracompact space then $C_k(X)$ is α -favorable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A natural question that arises with $C_k(X)$, the space of all continuous real-valued functions on X with the compact-open topology, is: given a topological property P of $C_k(X)$ is there a property Q of X such that $C_k(X)$ has property P if and only if X has property Q? In particular, it is an open problem to characterize those spaces X for which $C_k(X)$ has the Baire property. In [3] it was shown that if X is a q-space (e.g., first-countable or locally compact), then $C_k(X)$ is Baire if and only if X has the moving off property (see the next section for definitions). In [1] and [2] the moving off property is also shown to characterize those X for which $C_k(X)$ is Baire in the class of generalized ordered spaces (GO-spaces), and for certain examples of topological fans with topologies intermediate to the metric and sequential fans. In this paper, we will show that if X is a Lašnev space, the closed image of a metric space, then the moving off property also characterizes when $C_k(X)$ is Baire; more generally, this holds in the class of closed images of first-countable

paracompact spaces. We also show that for X in this class, $C_k(X)$ is Baire iff it is α -favorable. Finally, we prove that if X is the closed image of a locally compact paracompact space then $C_k(X)$ is α -favorable.

All spaces in this paper are assumed to be completely regular and T_1 .

2. Preliminaries

A collection \mathcal{A} of sets is said to move off a collection \mathcal{B} of sets if for any $B \in \mathcal{B}$ there is an $A \in \mathcal{A}$ such that $A \cap B = \emptyset$. Recall that a collection \mathcal{S} of subsets of a topological space is discrete if given any $x \in X$ there is an open set U containing x such that $U \cap A \neq \emptyset$ for at most one $A \in \mathcal{S}$. A collection \mathcal{S} of subsets of a topological space is strongly discrete if there is there is a discrete family $\mathcal{U} = \{U_A : A \in \mathcal{S}\}$ of open sets such that $A \subseteq U_A$ for all $A \in \mathcal{S}$. Gruenhage and Ma [3] defined the following property. A topological space X is said to have the moving off property if given any collection \mathcal{K} of compact subsets of X that moves off the family of all compact subsets, there exists a strongly discrete infinite $\mathcal{K}' \subseteq \mathcal{K}$. In [3] it was shown that for any X if $C_k(X)$ is Baire then X has the moving off property, and the converse was conjectured.

Conjecture 1. X has the moving off property if and only if $C_k(X)$ is Baire.

The analogous characterization for $C_p(X)$, in which (roughly speaking) compact sets in the definition of the moving off property are replaced by finite sets, is true and was given independently by E.G. Pytkeev [7], V.V. Tkachuk [8,9], and E.K. van Douwen (unpublished; see page 34 in [10]).

Conjecture 1 has been shown to be true when restricted to various classes of topological spaces. The following is a well known generalization of first countability. A space X is said to be a q-space if for each $x \in X$ there is a sequence $(U_i : i \in \omega)$ of open neighborhoods of x such that if $x_n \in U_n$ for each $n \in \omega$ then $\{x_n : n \in \omega\}$ has a cluster point.

Theorem 2.1. (/3/)

- (a) If X is a q-space with the moving off property, then X is locally compact.
- (b) If X is locally compact, then $C_k(X)$ is Baire if and only if X has the moving off property.

We now recall game characterizations for both the moving off property and the Baire property which will be used extensively in showing that Conjecture 1 holds in the class of Lašnev spaces.

Recall that the Banach–Mazur Game, BM(X), on a topological space X is a game with two players β and α , which alternately play non-empty open subsets of X. On move 0, β chooses a non-empty open set U_0 and α responds with a non-empty open set $V_0 \subseteq U_0$. On move n > 0, β chooses a non-empty open set $U_n \subseteq V_{n-1}$ and α responds with a non-empty open set $V_n \subseteq U_n$. β wins if $\bigcap \{U_i : i \in \omega\} = \emptyset$; α wins otherwise. A strategy for a player is *stationary* if it depends only on the last move of the opponent. The space X said to be weakly α -favorable (resp., α -favorable) if α has a winning strategy (resp., stationary winning strategy) in BM(X). The following is due to Oxtoby:

Theorem 2.2. ([6]) β has no winning strategy in BM(X) if and only if X is Baire.

The following game is found in [3]. Suppose X is a topological space; the game $G_{K,L}^{\circ}(X)$ is a topological game with two players K and L, which alternately choose compact subsets of X. On move 0, K plays a compact set K_0 and L responds with a compact set L_0 such that $K_0 \cap L_0 = \emptyset$. On move n > 0, K chooses a compact set K_n with no restrictions, and L responds with a compact set L_n such that $L_n \cap \bigcup \{K_i : i \leq n\} = \emptyset$. K wins if $\{L_i : i \in \omega\}$ is strongly discrete. L wins otherwise.

Download English Version:

https://daneshyari.com/en/article/4658054

Download Persian Version:

https://daneshyari.com/article/4658054

<u>Daneshyari.com</u>