

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Invariant measures on topological groups [☆]

Shu-Qi Huang*, Wei-Xue Shi*

Department of Mathematics, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

Article history: Received 20 October 2015 Received in revised form 22 January 2016 Accepted 7 February 2016

MSC: 54H11 28A12 43A05

Keywords: Invariant measure Content Admissible family \mathcal{K} -inter regular

ABSTRACT

In this paper, we prove that every locally \mathcal{K} (see Definition 3.4) topological group has a nonzero outer regular invariant Borel measure when \mathcal{K} is an admissible invariant family which is separated by \mathcal{N}_G . In this case, every open set and every member of $\mathcal{S}(\mathcal{K}_0)$ are \mathcal{K} -inner regular. This extends the existence theorem of Haar measure on locally compact Hausdorff groups.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Haar measure is a nonzero Borel measure μ on a locally compact Hausdorff topological group G, such that

- (1) $\mu(gE) = \mu(E)$ for any Borel set E and any $g \in G$;
- (2) $\mu(K) < +\infty$ for any compact set;
- (3) μ is outer regular and every open set is inner regular.

The concept of the Haar measure was introduced by Alfred Haar in 1933 [1]. He proved the existence of an invariant measure for locally compact topological groups with a countable basis. In this case, the invariant measure is called a Haar measure.

E-mail addresses: hshq0423@126.com (S.-Q. Huang), wxshi@nju.edu.cn (W.-X. Shi).

[☆] The project is supported by NSFC (No. 11271178).

^{*} Corresponding authors.

The existence and uniqueness of a Haar measure for locally compact Hausdorff topological groups were first proven in general by Andre Weil in 1940 [2]. In fact, Weil constructed a Haar integral on a given locally compact Hausdorff group G. By Riesz representation theorem, there exists a Haar measure for G.

In the late 1940s, based on the method used by Haar and Weil, Paul R. Halmos gave a proof about the existence of Haar measure for locally compact groups in terms of "content" [3]. He defined an invariant content λ on the family of all compact subsets, used the term "Borel set" for elements of the σ -ring generated by compact sets, and then constructed a Haar measure from λ .

The main purpose of this paper is to extend the existence theorem of a Haar measure on locally compact Hausdorff groups to some locally \mathcal{K} (see Definition 3.4) topological groups. First, we introduce the notion of admissible families on a topological space, and give some properties of a content λ defined on an admissible family \mathcal{K} . Afterwards, we discuss the regularity of the measure induced by λ (see Theorem 2.2). Based on Theorem 2.2, we construct a nonzero outer regular invariant Borel measure μ for some locally \mathcal{K} topological groups, and show that every open set and every member of $\mathcal{S}(\mathcal{K}_0)$ are \mathcal{K} -inner regular (see Theorem 3.1). Actually, Theorem 3.1 is a generalization of the well-known existence theorem of Haar measure on a locally compact Hausdorff group (see Corollary 3.1).

Throughout this paper, undefined terminology should be referred to [5].

2. Contents and K-inner regularity

In this section, we introduce the notion of admissible families, and discuss the regularity of the measure induced by λ which is a content defined on an admissible family \mathcal{K} .

Definition 2.1. Let (X, \mathcal{B}, μ) be a measure space and $\mathcal{F} \subset \mathcal{B}$. We say that a measurable set E is \mathcal{F} -inner regular if $\mu(E) = \sup\{\mu(A) : A \subset E, A \in \mathcal{F}\}$. If every $E \in \mathcal{B}$ is \mathcal{F} -inner regular, then μ is said to be \mathcal{F} -inner regular.

Remark. This definition is accordance with that of \mathcal{K} -inner regular in [4].

Proposition 2.1. Let (X, \mathcal{B}, μ) be a measure space and $\mathcal{F} \subset \mathcal{B}$. Then every member of \mathcal{F} is \mathcal{F} -inner regular.

Proposition 2.2. Let (X, \mathcal{B}, μ) be a measure space and \mathcal{F} a family of measurable sets which is closed under the formation of countable intersections and finite unions. If for each $n \in \mathbb{N}^*$, E_n is a finite measure set which is \mathcal{F} -inner regular, then $\bigcap_{n=1}^{\infty} E_n$ and $\bigcup_{n=1}^{\infty} E_n$ both are \mathcal{F} -inner regular.

The proofs of Proposition 2.1 and Proposition 2.2 are trivial.

Throughout this section, unless in a special context we explicitly say otherwise, we assume that $(X, \mathcal{T}, \mathcal{B}, \mu)$ is a topological measure space where (X, \mathcal{B}, μ) is a measure space and \mathcal{T} is a topology on X such that $\mathcal{T} \subset \mathcal{B}$, that is, every Borel set is measurable. Let \mathcal{F} be a family of measurable subsets of X which is closed under the formation of countable intersections and finite unions. We shall use the symbol \mathcal{F}_0 for the family of all finite measure sets which belong to \mathcal{F} .

Proposition 2.3. Let A be a member of \mathcal{F} . If there exists an open set U with finite measure such that $A \subset U$, and every open set is \mathcal{F} -inner regular, then every open subset of A is \mathcal{F} -inner regular.

Proof. Let E be an open subset of A. Suppose $E = V \cap A$ and V is an open subset of X. Since $V \cap U$ and A both are F-inner regular, by Proposition 2.2, we have that $E = V \cap U \cap A$ is F-inner regular. \square

Download English Version:

https://daneshyari.com/en/article/4658063

Download Persian Version:

https://daneshyari.com/article/4658063

<u>Daneshyari.com</u>